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Abstract 

Secure or Insure: An Economic Analysis of Security Interdependencies and Investment 

Types 

by 

Jens Grossklags 

Doctor of Philosophy in Information Management and Systems 

University of California, Berkeley 

Professor John Chuang, Chair 

Computer users express a strong desire to prevent attacks, and to reduce the losses from 

computer and information security breaches. However, despite the widespread availability 

of various technologies, actual investments in security remain highly variable across the 

Internet population. As a result, attacks such as distributed denial-of-service and spam 

distribution continue to spread unabated. 

Users may struggle to respond vigorously because the effectiveness of security deci­

sions is subject to strong interdependencies in a network, and different types of threats. In 

this dissertation, we address this complexity by analyzing investment decision-making in a 

unified framework of established games (i.e., weakest-link, best shot, and total effort) and 

novel games (e.g., weakest-target). 
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We examine how incentives shift between investment opportunities in a cooperative 

good (protection) and a private good (self-insurance), subject to factors such as network 

size, type of attack, loss probability, loss magnitude, and cost of technology. We capture 

security weaknesses due to monocultures by analyzing decision-making for an economy of 

homogeneous, selfish and fully rational agents under complete information. We compare 

our analysis to the case of heterogeneous users modeling efforts for security diversity. The 

findings highlight circumstances where poorly aligned incentives lead to security failures, 

and how interventions may be helpful. 

Extending our analysis and relaxing assumptions on individuals' rationality, we con­

sider the case of a single rational expert agent in an economy of nearsighted agents that 

under-appreciate the effect of security interdependencies. We further measure the value 

of information availability in the security context. Specifically, we introduce the price of 

uncertainty metric that quantifies the maximum discrepancy between the total expected 

payoffs for different information conditions. By evaluating the metric in different inter-

dependency scenarios, we can determine which configurations can better accommodate 

limited information environments. 
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Chapter 1 

Introduction 

"One of the lamentable principles of human productivity is that it is easier to destroy 

than to create." Thomas C. Schelling (Arms and Influence [191]) 

The globally interconnected network serves as the basic infrastructure for countless as­

pects of the information society and substantially supports the worldwide economy and 

civil organization. The Internet has opened new and attractive channels to create, publicize 

and market products, to communicate with friends and colleagues, and to access informa­

tion from spatially distributed resources. Though it has grown significantly, the network's 

architecture still reflects the cooperative spirit of its original designers [185]. Unfortunately, 

today's network users are no longer held together by that same sense of camaraderie and 

common purpose. 

In fact, the expansion of the Internet has attracted individuals, groups and even orga-
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nizations sponsored by nation states with often destructive and intrusive motivations [58]. 

During the early days of the Internet, the majority of these malefactors1 were motivated by 

peer recognition, or curiosity, and were often undecided regarding the ethical legitimacy 

of their behavior, but actual damages were limited [89,90,119,202].2 However, with the 

increasing centrality of the Internet for the public and private sectors, Internet miscreants 

learned to conceive and implement techniques with the objective to exploit network stake­

holders for their financial gain on a large-scale basis [1,73,123,130,159,204]. 

The associated security attacks are common, widespread and highly damaging [166]. 

The "I Love You" virus [145], Code Red [158], Slammer [157], Storm [111], and Dow-

nadup worms [163] to cite some of the most famous cases, have infected hundreds of 

thousands of machines and installed code to steal personal and financial information, or 

to misappropriate resources for distributed denial of service attacks. Participants in under­

ground markets are actively trading goods as diverse as individuals' banking credentials, or 

processing time on compromised resources [73].3 Companies suffer from directed security 

attacks exposing their business secrets and customer data [180]. All together, these activ­

ities cost users and businesses billions of dollars in damages, while governments fear for 

public safety and security balance [19,52,208]. 

*We are avoiding the term "hacker" due to its semantic ambiguity including legitimate and illegitimate 
computer wizardry [110,141]. 

2Already in the mid-nineties, a large share of businesses reported security breaches. For example, a 
CSI/FBI survey showed that 40 percent of the surveyed sites suffered at least one unauthorized access [51]. 

3The existence of active marketplaces evidences a high degree of specialization. However, some re­
searchers also note significant inefficiencies due to fraud between criminals [102]. 
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1.1 Technical security vulnerabilities 

The surge of problems can be partly attributed to the fact that the global network 

infrastructure "is neither secure enough nor resilient enough" given current and future 

needs [100]: For example, security researchers have observed a multitude of problems 

associated with the basic routing infrastructure. Chakrabati and Manimaran distinguish 

between attacks on the Domain Name System (DNS)4, routing table poisoning, packet 

mistreatment, and denial-of-service efforts [43]. Butler et al. provide an in-detail analy­

sis of security threats challenging the dominant protocol for interdomain routing (i.e., the 

Border Gateway Protocol (BGP)) [39]. The limited technical guarantees provided by the 

protocol can cause instability and outages that, although frequently limited in impact and 

scope, may result in crippling and widespread harm (see, for example, research on prefix 

hijacking [30]). 

Further, communications and information security protocols and algorithms are contin­

uously probed. For example, Borisov et al. report ways to break the still widely used Wired 

Equivalent Privacy (WEP) protocol for wireless communications [31]. Given its popular­

ity, it is surprising that the weakness of the protocol stems from failures in the application 

of cryptographic primitives rather than, for instance, side-channel attacks on the underly­

ing hardware, implementation or configuration errors. In general, most security protocols 

can be challenged with brute force attacks, i.e., systematically probing with a large number 

4The DNS is a global, distributed, and hierarchical directory with the primary purpose of translating 
domain names to numeric IP addresses. 
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of attempts. However, these strategies are usually computationally expensive. For exam­

ple, in theory it would require 280 attempts to find a message that would hash to the same 

value given the algorithm for the SHA-1 cryptographic hash function.5 However, groups 

of researchers developed sophisticated collision strategies to reduce the required number of 

attempts to 269 computations and later to 263 [214], and eventually to 252 [151]. 

Vulnerabilities in desktop and networking software are at the heart of many harmful 

security incidents. Weaknesses can be introduced at any stage during the software product 

life cycle, including specification, design, implementation, deployment and maintenance 

[136,170]. The prevention of vulnerabilities is complicated because they can manifest 

themselves in a myriad of ways, such as in the form of an unchecked buffer or a race 

condition. Further, the requirements for modern software systems frequently lead to large 

increases in code volume and, therefore, code complexity.6 

Researchers and industry have responded to these key weaknesses by developing nu­

merous security technologies to alleviate many of the aforementioned problems [9].7 How­

ever, many security compromises could potentially be prevented with more diligent adop­

tion of improved security software, patches and protocols. 

5Cryptographic hash functions should create a unique relationship between an input message and a hash 
value. They are used in many security applications, e.g., the protection of the integrity of a data repository 
[172]. 

6The measurement of software complexity is not straightforward, and many mathematical formulations 
have been proposed (e.g., [68,149]) and evaluated (e.g., [18,218]. See also the literature on software reliability 
[24,33]. 

7 Several other technical challenges exist such as overcoming insecurities associated with hardware de­
vices. Examples include challenges to card readers for online banking [61], appliances using radio frequency 
identification [120], smart cards [193], automatic teller machines [109], electronic voting machines [67] etc. 
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1.2 Failures in infrastructure security investments 

All stakeholders of Internet communications experience the negative consequences of 

security incidents. For instance, service providers suffer from the additional cost of abuse 

notifications and management, and software vendors and content providers endure brand 

tarnishing, patching and notification costs [85, 166, 182]. Unfortunately, the deployment 

of promising countermeasures is frustratingly slow and hampered by cost considerations, 

misaligned incentives and coordination problems [10]. 

A primary reason why security technologies are not adopted or upgraded is the direct 

economic cost. For example, the introduction of protocols using cryptographic primitives 

may necessitate additional hardware investments. A frequently discussed case is the lack 

of widespread deployment of Internet Protocol Security (IPsec) used to authenticate and 

encrypt Internet Protocol (IP) packets. Miltchev et al. conduct a protocol benchmark anal­

ysis of IPsec. They acknowledge that the benefits of IPsec are immediately obvious. But 

the advantages must be weighted with the need for technology purchases, e.g., hardware 

cryptographic accelerators [155]. 

Further significant hurdles for deployment arise due to the various interdependencies 

and the associated positive and negative externalities between the different stakeholders of 

Internet communications [49]. A key entity are Internet Service Providers who are gener­

ally (technically) capable of undertaking changes from the physical infrastructure level up 

to the application layer, but only within their domains. The global network infrastructure 
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consists of more than 20000 globally accessible autonomous systems [59]. And, typically, 

a service provider does not have purview and control over an entire end-to-end path [65]. 

Accordingly, the benefit that providers can derive from a deployment of new technology 

may depend on the number of other entities taking the same measure. Depending on the 

type of improvement, a unilateral enhancement might yield the desired benefit. At the other 

extreme, complete cooperation of all network operators may be required.9 The secure shell 

(SSH) protocol is an example for a communication primitive where even a small group of 

adopters - like a single organization - can reap immediate benefits [181]. In contrast, the 

Domain Name System Security Extensions (DNSSEC) necessitate widespread adoption to 

improve network security [167]. 

1.3 Understanding individual security decisions 

Consumers and small businesses are caught between a rock and a hard place. Some 

reports declare they are a significant factor for the prevailing security problems [77].10 

However, as a group they bear the brunt of the attacks and cannot rely on protection from 
8An autonomous system is a group of computer networks using the same routing policy that are, therefore, 

commonly under the same administrative authority [28]. From 1997 to 2005, researchers observed an increase 
of the number of globally routable autonomous system identifiers from less than 2000 to more than 20000 
[59]. Dimitropoulos et al. provide a classification based on size and ownership: large ISPs (44), small 
ISPs (5599), customer autonomous systems (11729), universities (877), Internet exchange points (33), and 
Network Information Centers (332) [59]. 

9Network virtualization has been proposed to allow providers to run customized networks in a parallel 
fashion over a shared infrastructure (e.g., [65]). However, Laskowski and Chuang point at the lack of adoption 
incentives for the virtualization technologies themselves [137]. 

10For example, in the context of identity theft one can find commentary stating that "consumers are to 
blame for many identity theft incidents, because they fall for phishing attacks, they fail to secure personal 
information, or they allow family members or friends to steal their identity" (collected by Hoofnagle [113]). 
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their service and content providers [11]. Further, consumers are severely limited in finding 

redress with the help of law enforcement or government agencies (e.g., the Federal Trade 

Commission).11 

When asked in surveys, network users say they are interested in preventing attacks and 

mitigating the damages from computer and information security breaches [3,36,121,200]. 

And consumers and small businesses are certainly taking some precautionary measures. 

But the evidence is mixed. A 2008 home user study provided adoption data for important 

security software. The report evidenced that some security software solutions are quite 

common, e.g., anti-virus software (95% installation rate), anti-spyware applications (82%). 

Other basic safety solutions are notably absent, i.e., firewall technologies (58%), anti-spam 

(42%) and anti-phishing (50%) [162].12 Another survey presents discouraging data about 

the usage of information security practices. For example, at least 67 percent of the surveyed 

home users never used email encryption, 82 percent never utilized credit alerts, and 83 

percent never removed their private telephone numbers from public directories [3].13 

Further, the speed of attack innovation will render even up-to-date prevention measures 

sometimes powerless, and users are therefore urged to invest in mitigation and backup 

11 Consider the following non-exhaustive list of obstacles. First, while the number of identity theft inci­
dents grows faster than other types of theft, the clearance rate is falling behind [6]. Second, transborder 
communication and cooperation difficulties (both national and international) impede law enforcement effec­
tiveness [207]. Third, the Federal Trade Commission is tasked to prevent fraudulent, deceptive, and unfair 
business practices in the marketplace and to provide information to help consumers, however, it usually does 
not resolve individual consumer complaints [66]. Fourth, consumers will not always be able to prove mini­
mum damages as required by legal statutes. For example, the Computer Fraud and Abuse Act requires a "loss 
to one or more others of a value aggregating $ 1,000 or more during any one year period (18 USC 1030)." 

12 For the report 400 personal computers located in the United States were scanned [162]. See also earlier 
reports conducted by the National Cyber Security Alliance, e.g., [12,13,148]. 

13The survey study was conducted online and included 119 responses [3]. 
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technologies. However, a 2001 survey found that about 25 percent lost data to security 

incidents as well as hardware and software faults. Further, only 41 percent personally 

conducted data backups and 69 percent did not recently create a copy of their data [36].14 

In 2009, an international survey found that 66 percent have lost files (with 42 percent within 

the last 12 months). The survey also noted a low usage rate of backup technologies of less 

than 50 percent [121].15 

The empirical evidence shows that users and small businesses are concerned about secu­

rity, but they follow highly different security strategies.16 In the following, we ask whether 

these observations can be explained with economic considerations. Alternatively, do users 

invest too little, or too much, or are we witnessing the results of naive consumer decision­

making [21]? 

1.4 Developing an economic framework for user security 

decisions 

In this dissertation, we take a theoretical approach to analyze individuals' security in­

centives. We are thereby building on prior work from risk management, public goods 

economics, and the relatively novel research area on the economics of computer and net­

work security. We develop a mathematical framework that addresses important aspects of 

14About 1000 computer users were surveyed for the report [36]. 
154257 consumers from 129 countries were included in the survey study [121]. 
16Further support is provided by ethnographic studies in workplace environments [60]. 
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security investment decisions. In the following, we are highlighting several focus areas of 

our models that we will address more thoroughly in the remainder of this work. We begin 

with the modeling of interdependencies, and the consideration of preventive and mitigating 

security investment types. We continue with a discussion of rationality assumptions that 

shape individuals' reactions to threats. Finally, we discuss different assumptions about the 

amount of information users have at their disposal about security threats and consequences. 

Interdependencies: While many models prescribe behavior in individual choice situa­

tions, the focus of our work is to model and study strategic interaction in networked systems 

to understand the impact of individual choices within a larger group. Such interactions usu­

ally involve common as well as conflicting interests [190].17 

A further concern is the large and growing number of security threats, vulnerabili­

ties and implications, which pose significant challenges for end. users. We argue that by 

considering a finite number of canonical cases we can highlight important differences in 

the incentive structure for security investments. The analysis explains security failures in 

practical settings and helps to evaluate intervention mechanisms and countermeasures that 

respect economic considerations. 

• First, in the, perimeter defense scenario a breach at a single point will leave the whole 

of a network unprotected and open to harm. This scenario is a major cause of con­

cern for businesses that have to trust all employees to adhere to security guidelines 

and practices [81]. Similarly, this weakness affects any group of users that relies 
17This mutual dependence as well as opposition guarantees for a more realistic scenario for analysis. Pure 

conflict, in which the interests of all agents are completely opposed, is a special case [190]. 



www.manaraa.com

10 

on the confidentiality of a shared secret (e.g., access passwords, membership in an 

organization, customer data, business secrets) [53,153]. 

• Second, in the cumulative defense scenario the probability of harm and/or the mag­

nitude of potential damages incrementally increases with the number of users not 

taking security measures. For example, the volume of spam amplifies with the 

share of consumers who open or conduct purchases based on unsolicited commu­

nications [144]. In a like manner, the threat of distributed denial of service attacks 

becomes more significant with the number of compromised end-user resources [178]. 

• Third, with the last stand defense we address situations in which a protective effort's 

success critically depends on the survival of at least a single part of the network (e.g., 

a user's computer with a valuable document). Primary examples are the threat of 

censorship whether attempted by technical or legal means [8,64], and the protection 

of decentralized storage systems in peer-to-peer networks [183] and wireless sensor 

networks [80]. 

• Fourth, the effectiveness of a comparative defense relies on the proposition that other 

entities are less well protected against security threats or more attractive to an at­

tacker.18 Many cybercrime activities rely on low costs, for example, when send­

ing unsolicited bulk email or reselling stolen credentials at underground market­

places [50,70]. 

18We consider attackers that search for the least protected defenders. More generally, malefactors might 
react to preventive investments by considering, for example, alternate times, places, methods, or completely 
different offenses [105]. 
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Interdependency 
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Weakest Target 
Interdependency 

Figure 1.1: Overview of security games. 

To analyze these canonical cases, we build upon public goods literature [107,212] by 

mapping to the economic games depicted in Figure 1.1. We consider the classical weakest-

link, total effort and best shot games and analyze them in a security context.19 We comple­

ment these three games with a novel model, called the weakest-target game to capture the 

comparative defense scenario. 

On a high level, we make a distinction between tightly-coupled and loosely-coupled 

interdependencies [75,169]. In a tightly-coupled network, all defenders will face a loss if 

the condition of a security breach is fulfilled. This description applies to the public goods 

interdependencies. In a loosely-coupled network consequences may differ for network par­

ticipants. Particularly lucrative or unprotected targets receive preference from an attacker 

while other defenders are not attacked and remain unharmed. We capture this type of in­

terdependency with the weakest-target game. 

A point of contention for practitioners is the feasibility of an infallible defense in the 

19We will discuss our approach more closely in Chapter 2. 
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Loosely-Coupled 
Dependencies 

Perfect Defense Perfect Attack 

Weakest Target Weakest Target 
interdependency Interdependency 
With Mitigation Wiifidut Mitigation 

Figure 1.2: Security games: Perfect defense and perfect attack. 

context of computer security [186]. We contribute to this debate by proposing two vari­

ations of the weakest-target game (see Figure 1.2). On the one hand, in the case with 

mitigation defenders can invest in safe protection with the guarantee of evading security 

compromises. On the other hand, the weakest-target game without mitigation allows an 

attacker to overcome the defense of even well-protected entities.20 

Diversity of security actions: Past research on the economics of computer security 

focused on security investments as a problem with a single variable (i.e., amount of money 

spent on preventive security). In our work, we consider two key components to be part of a 

comprehensive security strategy. First, individuals can invest in self-protection. Protection 

efforts include the patching of system vulnerabilities, investments in firewall and intrusion 

detection systems, and the adoption of scanning software against viruses, spyware, spam, 

and other forms of malicious code. We also consider security-conscious behaviors such as 

the immediate deletion of suspect email in this category. Second, individuals can select self-

20This distinction could also be made for the public goods games. We defer this extension to future work. 
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insurance to reduce the damages from security breaches. The most important mitigating 

measure are comprehensive backups.21 

Rationality assumptions: The complexity of network security poses immense require­

ments on the rationality of decision-makers. In order to implement optimal security invest­

ments, individuals need to comprehend the impact of interdependencies and the trade-off 

between different security actions. Further, agents must collect essential data, be able to 

compute strategies, and practically execute their plans without mistakes [3,194]. These 

challenges cause computer users to apply qualitative evaluations and aspirational solutions 

to security problems. This leaves the potential for weaknesses in their defenses [83,84].22 

In prior work, we addressed individuals' innate bounded rationality by developing a model 

of near-rational decision-making in networked systems [47].23 

In this dissertation, we are considering fully rational as well as bounded rational decision­

makers. In the latter case, we are interested in the structural understanding that average 

computer users have of system interdependencies. We anticipate the vast majority of users 

to be non-expert, and to apply approximate decision-rules that fail to accurately appreciate 

the impact of their security decisions on others. In particular, we assume non-expert users 

to conduct a simple self-centered cost-benefit analysis, and to neglect interdependencies. 

Such users would secure their system only if the vulnerabilities being exploited can cause 

21In the market insurance context, the importance of self-protection and self-insurance was first recognized 
by [62]. 

22We have also reviewed research at the intersection of computer science and behavioral experimentation 
[93]. 

23In particular, we applied the notion of the e-equilibrium concept [5,177]. Each individual is satisfied to 
get within a certain bound of the optimal payoff that would result from her best response to others' strategies 
[47]. 
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significant harm or a direct annoyance to them (e.g., their machines become completely 

unusable), but would not act when they cannot perceive or understand the effects of their 

insecure behavior (e.g., when their machine is used as a relay to send moderate amounts 

of spam to third parties). In contrast, an expert user fully comprehends to which extent her 

and others' security choices affect the network as a whole, and responds rationally. 

Information: Lack of information can significantly affect security-decision making and 

economic outcomes. In this dissertation, we are considering static games with complete 

and incomplete information. In particular, we address how users' security choices are 

mediated by the information available on the severity of the threats the network faces. At 

first, we develop models under the assumption that agents are fully aware of their own 

and all others' parameters (including security costs, and expected damages), strategies and 

resulting payoffs. Then, we relax this informational assumption. In practice, different 

targets, even if they are part of a same network, are not all equally attractive to an attacker: 

a computer containing payroll information is, for instance, considerably more valuable than 

an legacy system that holds historical data. In our incomplete information model, a user is 

aware of the potential damage that would result from a security breach (i.e., she is holding 

private information). However, individuals do not know the precise harm that successful 

attacks will inflict on their peers, and can only form an expectation on their respective 

willingness to invest in protection. 
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1.5 Summary of contributions 

We propose and analyze models on network and computer security decision-making. 

We aim to better understand investment decisions for protection and mitigation in several 

canonical security scenarios. Further, we expect to gain insights regarding security failures 

which we observe in practical settings. We discuss different intervention techniques and 

propose economic metrics to guide system design decisions. 

In our analysis, we take a systematic, step-by-step approach. 1) We start by discussing 

our basic model and conduct an economic analysis for symmetric static games with fully 

rational users in possession of full information. 2) We evaluate optimal security strate­

gies from the perspective of a social planner that has complete control over users' security 

investments. 3) By considering heterogeneity in the user population we are able to draw 

comparisons between uniform and diverse networks. 4) We relax assumptions about user 

rationality and information conditions to address concerns about practical challenges of 

security decision-making. 5) We develop metrics to evaluate the economic importance of 

complete information in comparison to restricted information about the impact of security 

attacks. We structure and summarize our contributions in the following section. 

The consideration of different security scenarios: As a first contribution, we present and 

discuss canonical types of security interdependencies. We focus in our interpretation on 

security challenges faced by end users and small businesses. We mathematically embed 

the interdependencies in five static economic games with complete information and mul­

tiple agents. We distinguish between scenarios in which agents share the consequences 
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of security successes and failures (i.e., tightly-coupled games), and loosely-coupled games 

allowing users to differentiate themselves from their peers. 

Our analysis of tightly-coupled interdependencies relies on prior work in public goods 

economics. We study the total effort, weakest-link, and best shot game in the security 

context. Further, we develop two variants of the novel weakest-target game to address 

loosely-coupled dependencies. In this game, attackers will successfully compromise users 

with the lowest security settings.24 

The set of security games allows us to contrast and compare economic incentives across 

important security scenarios. In practice, a particular type of threat will be dominant for 

a group of defenders. For example, a group of dissidents or political activists wants to 

prevent censorship of their documents (i.e., the best shot game) [78]. Similarly, savvy 

consumers want to avoid being targeted by financial fraud or network threats by investing in 

less frequently targeted (and potentially) safer technologies (i.e., the weakest-target game). 

The temptation to deviate from protection in the presence of self-insurance options: We 

provide a model that allows a decoupling of investments in the context of computer security. 

On the one hand, the defense can be strengthened with a higher self-protection investment 

(e.g., implementing or updating a firewall). On the other hand, the amount of losses can be 

reduced by introducing self-insurance technologies and practices (e.g., backup provisions). 

We study the strategic interactions of users by applying the Nash equilibrium solution 

concept. We examine how incentives shift between the two types of investment opportuni-

24In the weakest-target game with mitigation there is a safe investment level. 
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ties, subject to factors such as network size, type of attack, loss probability, loss magnitude, 

and cost of technology. 

We characterize for each game equilibria for protection, self-insurance and passivity. 

We find that for the total effort game and the weakest-link game multiple equilibria exist for 

the same parameter values. This multiplicity invokes complicated coordination problems. 

As a result, the availability of self-insurance technologies may weaken the willingness to 

protect when agents fear lack of others' cooperation. 

The role of a social planner in security games: Our analytic results for fully decentral­

ized decision-making highlight the benefits of an intermediary with the capability to en­

force superior protection and self-insurance strategies. For example, in the total effort 

game, individuals will frequently select protection efforts that are below the social opti­

mum (e.g., they may fail to coordinate on a protection strategy). We determine and discuss 

the strategies that maximize overall utility for all users in a network. 

In games with tightly-coupled interdependencies, we observe that a central planner 

may increase the average protection level of the network. However, we found that the 

common wisdom that having a central planner who decides upon security implementation 

always yields higher protection contributions by individual players does not hold (i.e., in 

the weakest-target game). 

The trade-off between monocultures and diversity: Some security researchers warn that 

our vulnerability to security threats is exacerbated by dominant products in the software 

and hardware segments. As a remedy the injection of heterogeneity has been proposed. We 
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evaluate the economic impact of the introduction of diversity by studying the incentives of 

a heterogeneous population in networks. 

We find that the robustness of protection outcomes in the presence of user heterogene­

ity depends on the type of interdependence For example, in the weakest-link game the 

injection of heterogeneity may likely lead some individuals to prefer self-insurance or pas­

sivity in comparison to protection investments. As a result, the willingness to protect will 

unravel in the population. In contrast, in the best shot game heterogeneity can serve as a 

coordination tool. 

A model with bounded rational agents and incomplete information: In this thesis, we 

develop a decision-theoretic model with a mixed population of expert and inexperienced 

users. Savvy users understand the implications of interdependencies. However, non-expert 

users are nearsighted and only perceive direct security threats on their resources, and ne­

glect the impact of their decisions on other agents. 

We study the strategic optimization behavior of such a rational expert user in an econ­

omy of naive users. We also address how the security choices by users are mediated by the 

information available on the severity of the threats the network faces. 

Naive users experience a payoff reduction as a result of their limited understanding of 

correlated threats, whereas experts may suffer from the impact of limited information. 

The development of metrics for measuring the value of information: We further ask how 

much defenders can gain by investing in techniques or other efforts to improve information 

availability about attack threats and other users' incentives. Our contribution is to pro-
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pose and evaluate a set of generic metrics that are applicable to different security decision­

making situations to help with this trade-off calculation. 

Specifically, we introduce the price of uncertainty metric that quantifies the maximum 

discrepancy in the total expected payoff between different information conditions. We 

consider difference, payoff-ratio, and cost-ratio sub-metrics as canonical nontrivial mea­

surements of the price of uncertainty. 

By evaluating the metrics for a range of parameters in the different security games, we 

can determine which configurations can accommodate limited information environments 

(i.e., when being less informed does not significantly jeopardize a rational user's payoff). 

We expect these results to be of relevance for systems designers and the economic metrics 

community. 

1.6 Roadmap 

In the following, we present the structure of this dissertation: 

• In Chapter 2 we provide an overview of related work including economic literature 

on security interdependencies and on the distinction between prevention and miti­

gation. Then we introduce the framework for security games with multiple agents. 

We analytically study individually rational decision-making of homogeneous agents 

in tightly and loosely coupled games. We derive Nash equilibrium strategies and 

determine social optima. 
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• Chapter 3 includes our discussion of heterogeneity in the context of security. We 

study how equilibrium predictions are impacted when agents face different losses, 

and dissimilar costs of security. 

• We modify our framework to account for bounded rationality of agents, and differ­

ent information conditions in Chapter 4. Agents differ in how they understand the 

interrelatedness of security decisions. Information availability is restricted about the 

expected damages that other agents face. 

• In Chapter 5 we develop metrics to quantify the value of complete information in 

comparison to incomplete information (using the model from Chapter 4). We study 

this price of uncertainty analytically and graphically. 

• We summarize contributions and discuss implications of our results in Chapter 6. We 

conclude with a discussion of opportunities for future work. 
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Chapter 2 

Security monocultures: Homogeneous 

agents 

In this chapter, building upon the literature on public goods [107,212], we consider 

the classical best shot, total effort, and weakest-link games, and analyze them in a security 

context. We complement these three games with a novel model, the weakest-target game, 

which allows us to describe a whole class of attacks ranging from insider threats to very 

aggressive worms. Furthermore, while most research on the economics of security focuses 

on security investments as a problem with a single variable (e.g., amount of money spent 

on security), we propose to decouple protection investments (e.g., setting up a firewall) 

from self-insurance coverage (e.g., archiving data as backup). This separation allows us to 

explain a number of inefficiencies in the observed user behaviors. 

This chapter is only a first step toward a more comprehensive modeling of user atti-
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tudes toward security issues. We analyze security decision-making for a number of homo­

geneous, selfish and fully rational agents under complete information. We will relax these 

assumptions in the later chapters of this dissertation. 

The rest of this chapter is organized as follows. We discuss the background of our 

model and related work in Section 2.1. We introduce our game-theoretic models in Sec­

tion 2.2. Then we present an analysis of the Nash equilibria (Section 2.5) and social optima 

(Section 2.6) for all games. We discuss and summarize our results in Sections 2.7 and 2.8, 

respectively. 

2.1 Background 

2.1.1 Security monocultures 

Some security researchers warn that our vulnerability to malware (malicious software) 

attacks is exacerbated by monoculture: the predominance of a single operating system or 

software application. The debate was sparked by a Computer and Communications In­

dustry Association report [79], which argued that Microsoft's dominance in the market 

for operating systems represents a grave threat to Internet safety and to national security. 

Reports by other industry research groups echo these concerns by recommending that com­

panies reduce their reliance on a single operating system in order to avoid damage caused 

by malware attacks [213]. 

In particular, users of highly popular software products may suffer from a monoculture 
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penalty. The more common a product is, the more attractive it appears to malefactors, and 

the more likely this product is targeted by malware attacks. Users are also more often sub­

ject to propagated threats that utilize the similarities between individual computing devices 

to more easily spread across the network. 

In contrast, monoculture has also direct security benefits. Uniform systems are easier to 

update and patch. Less complexity usually equals better understanding, and may therefore 

increase the incentives to contribute to system-wide security [23]. 

Our basic model captures decision-making in a homogeneous environment to address 

the impact of monocultures for network security in the presence of different types of de­

pendencies. Agents share the same cost for security, as well, as identical losses. In the 

following, we describe the security games framework in more detail. 

2.1.2 The social organization of security: Interdependencies 

The prevalence of widely spread, propagated and correlated threats such as distributed 

denial of service attacks (DDoS), worms and spam has brought attention to interdependen­

cies existing in computer networks. For an attacker this might create strong economies 

but sometimes also diseconomies of scale. For example, a single breach of a corporate 

perimeter may allow an attacker to harvest resources from all machines located within its 

borders. In other scenarios an attacker may have to shut down every single computer or 

network connection to achieve an attack goal and thereby incur large costs potentially pro­

portional to network size. More generally, there is an interaction between the structure of 
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the defenders' network, the attack goal and threat model. 

To better understand the implications of this mutual dependence, Varian [212] conducts 

an analysis of system reliability within a public goods game-theoretical framework. He 

discusses the best effort, weakest-link and total effort games, as originally analyzed by Hir-

shleifer [107,108]. The main difference from classical public goods theory is that within 

the framework of computer reliability "considerations of costs, benefits, and probability of 

failure become paramount, with income effects being a secondary concern." [212] Varian 

focuses on two-player games with heterogeneous effort costs and benefits from reliability.1 

He also adds an inquiry into the role of taxes and fines, and differences between simultane­

ous and sequential moves. 

We distinguish between tightly and loosely-coupled networks [169]. In a tightly cou­

pled network all defenders will face a loss if the condition of a security breach is fulfilled. 

This may be a suitable description, for example, of a network perimeter breach that causes 

the spread of malicious code to all machines, but also applies to independently acting de­

fenders that try to preserve a common secret or resist censorship. In a loosely coupled 

network consequences may differ for network participants. For example, an attacker might 

be interested to gain control over a limited set of compromised machines ("zombies" or 

"bots") and to organize them into a logical network ("botnet") with the goal of executing a 

DDoS attack against third parties or sending unsolicited information to and from the bots 

(i.e., popup advertisements and spam). At other times, an attacker might target a specific 

1A distinction between reliability and security, in terms of consequences, may exist [112]. In this study, 
we do not follow this distinction and consider reliability as a key component of security. 
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set of users (e.g., wealthy users in spearphishing scams). Other users would stay unharmed 

and are never targeted. 

There are several research papers that capture some degree of security interdependency 

between agents. Clark and Konrad analyze a variation of the weakest-link game in which 

one attacker is satisfied by breaching at least one point in the defense that is managed by 

a single player (who acts as a social planner for multiple defense points) [48]. Kunreuther 

and Heal derive rational strategies when defenders can protect themselves against directed 

attacks, but are helpless against propagated threats from their own peers [132].2 August 

and Tunca study patching behavior in a continuum of users when lack of security updates 

causes negative network externalities [16]. Further, several research papers explore the 

optimal strategies of defenders and attackers in graph-theoretic network security games 

[15,139,147,160]. 

Other works are concerned with how defenders' investment choices influence the num­

ber or identities of the specifically targeted individuals based on economic considerations 

(if the attacker has the capability to select) [22,55,189]. 

2.1.3 Individual choice: Security as a hybrid good 

Our work generalizes the research by Varian [212] and others in several aspects. First, 

instead of considering security decisions to be determined by a single "security" variable, 

we identify two key components of a security strategy: self-protection (e.g., patching sys-

2This work has been applied to the airline security context [101,125]. 
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tern vulnerabilities) and self-insurance (e.g., having good backups). More precisely, we 

allow agents to self-protect and/or self-insure their resources in iV-player games. We also 

contrast the three canonical games discussed by Varian with two more complex "weakest-

target" games that represent a more complicated incentive structure, which we believe ap­

plies to a whole class of security issues. 

Outside the network security context, the dual role of self-protection and self-insurance 

was first recognized by [62]. To provide a more precise definition, self-protection stands 

for the ability to reduce the probability of a loss - for example, by installing a firewall 

application which limits the amount of traffic allowed to communicate with one's network. 

Self-insurance, on the other hand, denotes a reduction in the magnitude of a loss, e.g., 

by performing regular backups on existing data. Some technologies and practices such as 

disconnecting a computer from a network do both. Ehrlich and Becker [62] focus in their 

analysis on the comparison of self-protection and self-insurance to market insurance. They 

find that, for rare loss events, there is less incentive to self-insure losses than to use market 

insurance. This is due to their assumption, that the price of self-insurance is independent of 

the probability of the loss. An additional result is that the demand for self-insurance grows 

with the base loss of a security threat. As an outcome of their work, they characterize self-

insurance and market insurance as substitutes, and self-protection and market insurance as 

complements. Our analysis complements the work in [62] by extending the concepts of 

self-protection and self-insurance to the public goods and security context. 

Several other researchers have included in their analyses the trade-off between differ-
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ent security measures [32,44]. Konrad and Skaperdas consider self-insurance and self-

protection decisions by individuals with rank-dependent expected utility preferences [128]. 

Briys et al. evaluate the benefits of self-protection and self-insurance when the associated 

technologies are not always reliable [35]. Another model addresses how a firm can opti­

mally respond to hazards in the production process by investing in mitigating or preventive 

technologies [106]. 

Our research complements work on market insurance for security and privacy [7,219]. 

Cyberinsurance can fulfill several critical functions. For example, audit requirements for 

cyberinsurance can motivate investments in security, and might contribute to a better under­

standing of the economic value of the protected resources [127]. Several researchers have 

investigated the impact of correlation of risks and interdependency of agents in networks 

on the viability of insurance [26,29]. 

2.2 Basic model of security games 

We define a security game as a game-theoretic model that captures essential characteris­

tics of decision making to protect and self-insure resources within a network. Varian [212] 

observed that frequently the success of security (or reliability) decision making depends on 

a joint protection level determined by all participants of a network. The computation of the 

protection level will often take the form of a public goods contribution function with nonri-

val and nonexcludable benefits or consequences. A main observation is that dependent on 
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the contribution function individuals may be able to freeride on others' efforts. However, 

individuals may also suffer from inadequate protection efforts by other members if those 

have a decisive impact on the overall protection level. 

Following Varian's exposition, we analyze three canonical contribution functions that 

determine a global protection level. Different from Varian's work however, here network 

members have a second action available: They can decide to self-insure themselves from 

harm. The success of insurance decisions is completely independent of protection choices 

made by the individual and others. Consequently, the games we consider share qualities 

of private (on the self-insurance side) and public (on the protection side) goods. We fur­

ther add to the research literature by studying two additional games with a more complex 

determination of protection levels. 

Security games share the following key assumptions: (i) all entities in the network share 

a single purely public protection output, (ii) a single individual decides on protection efforts 

for each entity (so we do not assume a second layer of organizational decision making), 

(iii) protection costs per unit are identical for each entity, and (iv) all decisions are made 

simultaneously. These assumptions are commonly made also in models on decision making 

of partners in military alliances [187], We add to these main assumptions that individuals 

are able to self-insure resources at a homogeneous cost with self-insurance being a purely 

private good. 

Formally, the basic model from which we develop the security games has the following 

payoff structure. Each of TV G N players receives an endowment M. If she is attacked and 
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compromised successfully she faces a loss L. Attacks arrive with an exogenous probability 

of p (0 < p < 1). Players have two security actions at their disposition. Player i chooses 

an insurance level 0 < Si < 1 and a protection level 0 < e; < 1. Finally, b > 0 and c > 0 

denote the unit cost of protection and insurance, respectively. The generic utility function 

has the following structure: 

Ur = M- pL{l - S i)(l - H(eh e_i)) - fee* - cSi , (2.1) 

where following usual game-theoretic notation, e_j denotes the set of protection levels 

chosen by players other than i. H is a "contribution" function that characterizes the effect 

of e{ on Uu subject to the protection levels chosen (contributed) by all other players. We 

require that H be defined for all values over (0,1)N . However, we do not place, for now, 

any further restrictions on the contribution function (e.g., continuity). From Eqn. (2.1), 

the magnitude of a loss depends on three factors: i) whether an attack takes place (p), ii) 

whether the individual invested in self-insurance (1 — Sj), and iii) the magnitude of the joint 

protection level (1 — Hfa, e_j)). Self-insurance always lowers the loss that an individual 

incurs when compromised by an attack. Protection probabilistically determines whether an 

attack is successful. Eqn. (2.1) therefore yields an expected utility. 

We introduce five games in the following discussion. In selecting and modeling these 

games we paid attention to comparability of our security games to prior research (e.g., 

[107,187, 212]). The first three specifications for H represent important baseline cases 

recognized in the public goods literature. To allow us to cover most security dilemmas, we 
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add two novel games, for which we could not find a formal representation in the literature. 

All games are easy to interpret within and outside the online security context. 

2.3 Tightly coupled security interdependencies 

In a tightly coupled network all defenders will face a loss if the condition of a security 

breach is fulfilled [75]. In the following, we discuss canonical examples of such interde­

pendencies and their interpretation in the security context. 

2.3.1 Total effort security game 

In the total effort security game the global protection level of the network depends on 

the sum of contributions normalized over the number of all participants. That is, we define 

H(ei, e_j) = jj ̂ 2i ej, so that Eqn. (2.1) becomes 

Ui = M-pL(l-si)(l- — ^2ek)-bei-csi. (2.2) 
k 

Economists identified the sum of efforts (or total effort) contribution function long be­

fore the remaining cases included in this section [107]. We consider a slight variation of 

this game to normalize it to the desired parameter range. A typical parable for the total 

sum function is that the effectiveness of a dam or city wall depends on its strength that is 

contributed to by all players. In terms of security the average contributions matters if an 

attacker wants to successfully conquer the majority of machines in a network one-by-one. 

For instance, consider a building plan for a new technology that is spread across a com-
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pany's network and which is considerably more valuable to an attacker, if obtained in its 

entirety. 

As another example, maybe more related to Internet security, consider parallelized file 

transfers, as in the BitTorrent peer-to-peer service. It may be the case that an attacker 

wants to slow down transfer of a given piece of information; but the transfer speed itself is 

a function of the aggregate effort of the machines participating in the transfer. Note that, 

the attacker in that case is merely trying to slow down a transfer, and is not concerned 

with completely removing the piece of information from the network: censorship actually 

results in a different, "best shot" game, as we discuss later. 

2.3.2 Weakest-link security game 

The overall protection level depends on the minimum contribution offered over all en­

tities. That is, we have H{ei, e_;) = min(ej, e_j), and Eqn. (2.1) takes the form: 

Ui = M - pL(l - Sj)(l - min(ei, e_;)) - fre* - cs; . (2.3) 

This game describes the situation where a levee or city wall that is too low at any point 

leads to a negative payoff to all players in the event of a flood or attack. The weakest-

link game is easily the most recognized public goods problem in computer security by 

business professionals and researchers alike.3 In the weakest-link externality an attacker 

is able (after approaching her target) to identify the least protected point in the system 
3See, for example, see a recent interview with a security company CEO. New York Times (Septem­

ber 12, 2007), "Who needs hackers," available at h t t p : / / w w w . n y t i m e s . c o m / 2 0 0 7 / 0 9 / 1 2 / 
t e c h n o l o g y / t e c h s p e c i a l / 1 2 t h r e a t . h tml . Stating that: "As computer networks are cobbled to­
gether [...] the Law of the Weakest Link always seems to prevail." 

http://www.nytimes.com/2007/09/12/
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of interconnected resources in which the target is embedded. Depending on the type and 

security actions of defenders the weaknesses of a system can be costly to circumvent, and 

of surprising variety. 

On the one hand, technology and code quality are often the culprits of (un)predictable 

weaknesses in the chain of defense. The increasing complexity of software products (for 

example, because of code bloat and feature creep) leaves little doubt that most publicly 

available software products include several significant security vulnerabilities [79]. But 

even sophisticated and thoroughly tested security software and protocols (e.g., certain hard 

disk encryption packages) can sometimes be broken with non-standard attacks [98], or 

large-scale brute-force efforts [126]. Legal, regulatory and law enforcement requirements 

can also put limits on security effectiveness (e.g., through mandatory escrow of encryption 

keys or inclusion of back doors in hardware and software technologies) [25]. 

On the other hand, many observers argue that the "human factor is truly security's 

weakest link" [156]. First, insiders may maliciously interfere with data and network se­

curity to the disadvantage of other individuals [179]. Second, an abundance of incidents 

involving lost and stolen property (e.g., laptops and storage devices), as well as individuals' 

susceptibility to deception and social engineering are evidence of breaches characterizing 

weakest-link vulnerabilities. Third, users may out of convenience, cognitive limitations or 

economic considerations engage in insecure practices. The most common example is the 

prevalent use of weak passwords in organizations reported in many empirical and behav-
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ioral studies [37,221].4 Password misuse can sometimes be remedied, but it "only requires 

one indiscretion to destroy a secret" [53] such as the identities of members of a darknet (for 

filesharing purposes). 

2.3.3 Best shot security game 

In this game, the overall protection level depends on the maximum contribution offered 

over all entities. Hence, we have Hfe, e_,) = max(e,, e_;), so that Eqn. (2.1) becomes 

Ui = M - pL(l - Sj)(l - max(ei, e_j)) - bei - csi . (2.4) 

As an example of a best shot game, consider a set of walls of which the highest sets the 

effectiveness benchmark. Among information systems, networks with built-in redundancy, 

such as peer-to-peer, sensor networks, or even Internet backbone routes, share resilience 

qualities with the best shot security game; for instance, to completely take down com­

munications between two (presumably highly connected) backbone nodes on the Internet, 

one has to shut down all possible routes between these two nodes. Censorship-resistant 

networks are another example of best shot games. A piece of information will remain 

available to the public domain as long as a single node serving that piece of information 

can remain unharmed [57]. 
4For example, the analysis of a leaked password data set from phpbb.com revealed that 16% of passwords 

matched a person's first name, 14% of passwords were patterns on the keyboard, 4% were variations of 
the word "password" etc. Analysis available as online article "PHPBB Password Analysis" at: h t t p : 
/ / w w w . d a r k r e a d i n g . c o m / b l o g / a r c h i v e s / 2 0 0 9 / 0 2 / p h p b b _ p a s s w o r d . h t m l . 

http://phpbb.com
http://www.darkreading.com/blog/archives/2009/02/phpbb_password.html
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2.4 Loosely coupled security interdependencies 

In a loosely coupled network consequences may differ for network participants [75]. 

For example, an attacker might target wealthy or inexperienced users. Other individuals 

would stay unharmed and are never targeted. In the following, we present two variations 

of the weakest-target game and propose security interpretations. 

2.4.1 Weakest-target security game (without mitigation) 

Here, an attacker will always be able to compromise the entity (or entities) with the 

lowest protection level, but will leave other entities unharmed. This game derives from the 

security game presented in [47]. Formally, we can describe the game as follows: 

0 ifti = min(ej,e_j), 
H(ei,e- (2.5) 

1 otherwise, 

which leads to 

M - pL(l - s^ - bei - est if e» = min(ej,e_j), 
Ui = < (2.6) 

M — bei — csi otherwise. 

The weakest-target game markedly differs from the weakest-link. There is still a de­

cisive security level that sets the benchmark for all individuals. It is determined by the 

individual(s) with the lowest chosen effort level. However, in this game all entities with a 

protection effort strictly larger than the minimum will remain unharmed. 

In information security, this game captures the situation in which an attacker is inter­

ested in securing access to an arbitrary set of entities with the lowest possible effort. Ac-
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cordingly, she will select the machines with the lowest security level. An attacker might be 

interested in such a strategy if the return on attack effort is relatively low, for example, if the 

attacker uses a compromised machine to distribute spam. Such a strategy is also relevant 

to an attacker with limited skills, a case getting more and more frequent with the avail­

ability of automated attack toolboxes [210]; or, when the attacker's goal is to commandeer 

the largest number of machines using the smallest investment possible [73]. Likewise, this 

game can be useful in modeling insider attacks - a disgruntled employee may for instance 

very easily determine how to maximize the amount of damage to her corporate network 

while minimizing her effort. 

2.4.2 Weakest-target security game (with mitigation) 

This game is a variation on the above weakest-target game. The difference is that, the 

probability that the attack on the weakest protected player(s) is successful is now dependent 

on the security level min e, chosen. That is, 

1 - ej if ei = min(e;,e_j), 
H(ei,e^)={ (2.7) 

otherwise, 

so that 

Ui= < (2.8) 
M -pL(l - SJ)(1 - a) - bet - csi if e, = m i n ^ e - i ) , 

M — bei — csi otherwise. 

This game represents a nuanced version of the weakest-target game. Here, an an attacker 

is not necessarily assured of success. In fact, if all individuals invest in full protection, not a 

single machine will be compromised. This variation allows us to capture scenarios where, 
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for instance, an attacker targets a specific vulnerability, for which an easily deploy able 

countermeasure exists. 

2.5 Nash equilibrium analysis 

We consider strategic interactions (called games) of the following simple form: the 

individual decision-makers (also called players) of a game simultaneously choose actions 

that are derived from their available strategies. The players will receive payoffs that depend 

on the combination of the actions chosen by each player. 

More precisely, consider a set iV = {2,..., n) of players. Denote as Si the set of pure 

(i.e., deterministic) strategies available to player i, and denote as Sj an arbitrary mem­

ber of i's strategy set. A probability distribution over pure strategies is called a mixed 

strategy Oi. Accordingly, the set of mixed strategies for each player, £;, contains the 

set of pure strategies, Si, as degenerate cases. Each player's randomization is statisti­

cally independent of those of the other players. Then, Ui represents player i's payoff 

(or utility) function: ti,(crj,cr_j) is the payoff to player i given her strategy (<Ji) and the 

other players' strategies (summarized as <T_J). An n-player game can then be described as 

G = {iV;£i ,£_j; t i j ,u_j}. 

Players are in a Nash equilibrium if a change in strategies by any one of them would 

lead that player to obtain a lower utility than if she remained with her current strategy [161]. 

Formally, we can define a Nash equilibrium as follows: 
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Definition of Nash Equilibrium: A vector of mixed strategies a* = (o{,..., a^) G E 

comprises a mixed-strategy Nash equilibrium of a game G if, for all i G N and for all 

a\ G Si, MiO ,̂ a*J - ^(a*, a l j < 0. 

A pure-strategy Nash equilibrium is a vector of pure strategies, s* G S, that satisfies 

the equivalent condition. 

The main advantage of the concept of Nash equilibrium resides in its simplicity. How­

ever, because Nash equilibria rely on very stringent assumptions on the capabilities and 

objectives of each player, they can predict counter-intuitive or unrealistic outcomes. Thus, 

the economics community has provided an increasing number of refinements to strengthen 

the concept of Nash equilibrium (e.g., perfect vs. proper equilibria). Similarly, some have 

investigated how to weaken the rational choice assumptions on which the Nash equilibrium 

concept is built: a rational player is expected to demonstrate error-free decision-making, to 

have perfect foresight of the game and to be unbounded in her computational abilities.5 In­

tuitively, players such as network users (which are not necessarily perfectly rational) or au­

tomated agents (which can be faulty, due to software bugs or misconfiguration, or have lim­

ited computational resources) will likely deviate from these rigid assumptions [40,74,93]. 

We next determine the equilibrium outcomes where each individual chooses protection 

effort and self-insurance investments unilaterally, in an effort to maximize her own utility. 

We focus our analysis on symmetric equilibrium strategies since the implementation of 

asymmetric investment decisions is a difficult coordination problem in networks without 

°See, for example, the research by [5,82,152,177]. 
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information exchange between agents. In Section 2.6, we then compare these results to the 

protection efforts and self-insurance levels chosen if coordinated by a social planner. 

2.5.1 Total effort security game 

Let us focus on player i, and consider ek fotk^i as exogenous. Then, [/»is a function 

of two variables, ê  and Sj. From Eqn. (2.2), Ui is twice differentiable in e* and Sj, with 

d2Ui/dsf = 0 and d2Ui/de2 = 0. Hence, according to the second derivative test, only 

(e;, Si) G {(0,0), (0,1), (1,0), (1,1)} can be an extremum - that is, possible Nash equi­

libria are limited to these four values (or to strategies yielding a payoff constant regardless 

of e{ and/or Sj). As long as at least one of b or c is strictly positive, (e*, Si) = (1,1) is 

always dominated by either (e,, s,) = (1,0) or (e ,̂ si) = (0,1) and cannot define a Nash 

equilibrium. Let us analyze the three other cases: 

• (e,, Si) = (0,0). Replacing in Eqn. (2.2), we get a payoff for passivity: 

• (e;, Si) = (0,1). Replacing in Eqn. (2.2), we get a payoff for full self-insurance: 

Ui = M-c. (2.10) 

• (ej, Si) = (1,0). Replacing in Eqn. (2.2), we get a payoff for full protection: 

^ = M - P L ( I - 1 - 1 J > ) - 6 . (2.11) 
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Result: After investigating Eqs. (2.9-2.11) we can identify three Nash equilibrium strate­

gies. 

• Passivity eq.: If pL < bN and pL < c, then (0,0) (passivity) is a symmetric Nash 

equilibrium. 

• Full.self-insurance eq.: If c < pL and c < b + pL (l — ^ ) , then (0,1) (full self-

insurance) is a symmetric Nash equilibrium. 

• Full protection eq.: If WV < pL and b < c, then (1,0) (full protection) is a symmetric 

Nash equilibrium. 

These algebraic inequality conditions on parameters are both necessary and sufficient 

for the specified Nash equilibrium to be strict. 

To derive these conditions, note that for any one of the three viable symmetric strategies 

to be a (strict) Nash equilibrium, it must be the case that for each player participating in 

such a strategy, it is disadvantageous for that player to switch to an alternative strategy. 

We obtain the conditions above by writing down the payoff for a given player i, using the 

definition of a (strict) Nash equilibrium, and simplifying. Below we will carry out the full 

argument for characterizing the passivity strategies that are Nash equilibrium. The other 

conditions are derived in a similar manner. 

In the case of the symmetric passivity strategy, the payoff for player iis M — pL, and 

we seek to derive conditions under which any alternative strategy of the form (e ,̂ s;) ^ 

(0,0) yields an inferior payoff. We begin by considering what happens when player i 
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adjusts her strategy by increasing only her level of self-protection. Since none of the other 

players are protecting, when player i chooses a non-zero protection level e,, her payoff is 

M — pL(l — j^) —bei = M — pL + e, ( ^ — b). Thus, it is a strict disadvantage for player 

i to increase only her protection level if and only if ^ — b < 0, or equivalently, pL < bN. 6 

Similarly, if player i increases her self-insurance level to some non-zero quantity si? her 

payoff becomes M — pL(l — Si) — csi — M — pL + s^pL — c); so it is a disadvantage for 

player i to increase her level of self-insurance if and only if pL — c < 0, or equivalently, 

pL < c. Since player i could conceivably increase her payoff by adjusting her levels of self-

protection or self-insurance individually, the preceding argument shows that the conditions 

pL < bN and pL < c are necessary for the symmetric passivity strategy to be a strict 

Nash equilibrium. To complete the argument for sufficiency of these conditions, we now 

show that under the specified conditions pL < bN and pL < c, any strategy of the form 

(e*, s^ 7̂  (0,0) results in a strictly inferior payoff for player i. For this we have: 

(since all other players are passive) 

c) 

(since pL < c and 0 < s j 

pL 
(since 0 < e j — and 0 < S;) 

(since 0 < e, and bN < pL) 

6Note that if bN = pL, then each player would be ambivalent about switching strategies. This strict 
equality condition can lead to various weak equilibrium strategies, but we consider the derivation of these 
conditions to be cumbersome and uninteresting and we do not address it in this treatment. 

Ui = M- pL{\ - ^ ) ( 1 - Si) - bei - csi 

= M-pL + ei t~(l - Si) ~ bj +Si(pL 

<M-pL + ei ULr(l-Si)-

<M-pL + et[^r-b 

< M -pL 
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Figure 2.1: Impact of network size, N, and loss magnitude, L, on threshold value for 
total effort self-insurance strategy. (Protection cost b=0.1, Attack probability p=0.5) 

This completes the derivation of necessary and sufficient parameter conditions for pas­

sivity to be a strict Nash equilibrium. As remarked previously, the derivations for other 

conditions are similar. Since there are eight additional conditions to address, we omit the 

remaining derivations for the purpose of saving the reader's time. 

Notice that there are several case conditions in which it is possible to have multiple 

types of equilibria within the same case. In particular, full protection and full self-insurance 

can both be Nash equilibria for the same set of parameters. 
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Increasing number of players N: As the number of players increases, protection equi­

libria become more and more unlikely to occur. Indeed, in a total effort scenario, benefits 

yielded by a player's investment in security have to be shared with all of the other partici­

pants, making it an increasingly uninteresting strategy for the player as the network grows. 

Further, with increasing TV the self-insurance equilibrium becomes more attractive (see 

threshold level b+pL (l — ~) plotted in Figure 2.1). That is, in larger networks protection 

has to compete with self-insurance as a viable option for individual security investments. 

2.5.2 Weakest-link security game 

Let e0 = mirij(ej). From Eqn. (2.3), we have Ui = M — pL(l — Sj)(l — e0) — bet — cSi, 

so that | ^ = pL(l — e0) — c, and, for all i, 

Ui< M - pL(l - Sj)(l - e0) - be0 - CSi , 

which is reached for ê  = e0. So, in a Nash equilibrium, everybody picks the same ê  = e0. 

It follows that Nash equilibria are of the form (e0,0) or (0,1). 

• Selecting (ei} s,) = (0,0) yields a payoff for passivity: 

Ui = M -pL. 

• Selecting (e ,̂ Sj) = (0,1) yields a payoff for full self-insurance: 

Ui = M-c. 



www.manaraa.com

43 

• Selecting (e ,̂ s^ = (e0,0) yields a payoff for self-protection at uniform level e0: 

Ui = M - pL(l - eo) - be0. 

Result: In the weakest-link security game, we can identify three types of Nash equilibrium 

strategies. However, there exist multiple pure protection equilibria. 

• Passivity eq.: If pL < c, then (0,0) (passivity) is a symmetric Nash equilibrium. 

• Full self-insurance eq.: If c < pL then (0,1) (full self-insurance) is a symmetric 

Nash equilibrium. 

• Multiple protection equilibria: If b < pL and b < c, then (e0, 0) (protection at level 

e0) is a symmetric Nash equilibrium for any e0 between £|j5f and 1. 

In the weakest-link security game, several Nash equilibria can co-exist for the same 

parameter settings. We find that protection and self-insurance equilibria compete with 

c < pL. Further, passivity and protection are both Nash equilibria if b < pL < c. 

Interestingly, an increase in the loss magnitude, L, will reduce the feasible space of 

concurrent Nash strategies for self-protection by reducing the perceived difference between 

the cost of protection and self-insurance (i.e., the existence of feasible joint protection 

levels, e0, between ^5f a nd 1). This effect reduces strategic uncertainty, when the loss is 

large compared with security costs. See Figure 2.2. 

Increasing number of players N: The weakest-link security game, much like the tacit 

coordination game of [211] has highly volatile protection equilibria when the number of 
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players increases. In fact, any protection equilibrium has to contend with the strategic 

certainty of a self-insurance equilibrium. To view this, consider the cumulative distribution 

function Ffe) over the protection strategies e* of a given player i. From what precedes, 

with pure strategies, in the Pareto-optimum, F(l) = 1 and Ffa) = 0 for a < 1. Assuming 

all N players use the same c.d.f. F, then the c.d.f. of e0 = mirij{ej} is given by Fmin(e0) = 

l - ( l -F (e 0 ) ) J V [211] . So,Fmin(l) = landFmin(e0) =0 fo re 0 < 1 as well. Now, assume 

there is an arbitrarily small probability e > 0 that one player will defect, that is F(0) = e. 

Then, Fmin(0) converges quickly to 1 as N grows large. That is, it only takes the slightest 

rumor that one player may defect for the whole game to collapse to the (ei,Si) — (0,1) 

equilibrium. 

If players are infallible and will not defect then the actual number of players has no 

impact on the expected outcome [107]. 

2.5.3 Best shot security game 

Let e* = max,(ej). Eqn. (2.4) gives 

Ui = M- pL{l - S i)(l - e*) - be{ - csi . 

An argument analogous to those above shows that the only possible equilibrium strategies 

are ones in which d and Sj take binary values. Clearly, (e ,̂ s,) = (1,1) is suboptimal, so 

that three strategies may yield the highest payoff to user i. 
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• Selecting (e,, Sj) = (0,0) yields a payoff for passivity: 

Ui = M-pL(l-e*). 

• Selecting (e ,̂ Sj) = (0,1) yields a payoff for full self-insurance: 

Ui = M -c. 

• Selecting (e ,̂ s,) = (1,0) yields a payoff for full self-protection: 

Ui = M-b. 

Result: From the above relationships, we can identify the following pure Nash equilibrium 

strategies. 

• Passivity eq.: If pL < b and pL < c, then (0,0) (passivity) is a symmetric Nash 

equilibrium. 

• Full self-insurance eq.: If c < b and c < pL then (0,1) (full self-insurance) is a 

symmetric Nash equilibrium. 

• No symmetric pure protection eq.: There is no pure-strategy symmetric Nash equi­

librium for this game. 

In particular, there is no pure symmetric protection equilibrium in this game. For one 

protection equilibrium to exist, we would need b < c and pL > b. But even assuming that 

this is the case, as long as the game is synchronized, players endlessly oscillate between 
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securing as much as possible (ê  = 1) and free-riding (e* = 0). This is due to the fact 

that as soon as one player secures, all others have an incentive to free-ride. Conversely, 

if everybody free-rides, all players have an incentive to deviate and secure as much as 

possible. 

If b < pL and b < c, then the asymmetric strategy in which exactly one player protects 

and the rest do nothing forms an asymmetric Nash equilibrium. Further, a mixed strategy 

that includes positive investments for protection exists. If b < c, then agents protect fully 
i i 

with probability 1 — (-7;) * a nd remain passive with probability (-j- J l . There are 

no parameter values such that there can exist more than one type of pure symmetric Nash 

equilibria. 

Increasing number of players N: In the absence of coordination between players, the 

outcome of this game is globally independent of the number of players N, as there is 

no protection equilibrium, and the insurance equilibrium is independent of the number of 

players. However, the game may be stabilized by using player coordination (e.g., side 

payments) for low values of N, something harder to do as TV grows. 

2.5.4 Weakest-target security game (without mitigation) 

Fix the strategy point and let e < | | . Let e0 be the minimum effort level of any player. 

Then no player selects a higher effort than e0 + e because it dominates all higher effort 

levels. However, any player at e0 would prefer to switch to e0 + 2s. Then the change in 

her payoff is greater than pL — 2^b = 0. Because this deviation is profitable this strategy 
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point is not an equilibrium.7 

Result: In the weakest-target game with an attacker of infinite strength we find that pure 

Nash equilibria for non trivial values ofb, p, L and c do not exist. 

Mixed strategy equilibria. While no pure Nash equilibria exist, let us explore the exis­

tence of a mixed strategy equilibrium. We use the shorthand notation ê  = e, Si = s here, 

and consider mixed strategies for choosing e. There are two cases to consider. 

Case c > pL: If c > pL then dominance arguments immediately lead to s = 0 meaning 

that nobody buys any self-insurance. 

An equilibrium strategy may be parametrized by e. For a given player, the utility func­

tion U becomes a function of a single variable e. Let /(e) be the probability distribution 

function of effort in the weakest-target game and let F(e) be the cumulative distribution 

function of effort. Assuming only one player is at the minimum protection level, shall an 

attack occur, the probability of being the victim is then (1 — F(e))N~1. (All N players 

choose protection levels greater than e.) 

Then the utility is given by 

U = M-pL(l-F(e))N~1-be. (2.12) 

In a Nash equilibrium, the first-order condition dU/de = 0 must hold, so that: 

{N-l)pLf(e)[l-F(e)]N-2-b = 0 

7While this proof assumes the player is initially at (e,, s;) = (eo, 0), it can be trivially extended to the 
case (e,, s*) = (eo, s) with s > 0 by picking e < | f (1 - s) + §f for any s in (0,1]. 
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If we substitute G = (1 - F(e)) and g = - / w e can write GN~2dG/de = -b/p(N - 1)L, 

which, by integration yields 

rG(0) /-0 _ L 
^ W _ 9 , ^ / f / GN-2dG= \ 

JG(e) Je G{e) Je P(N-1)L 
de 

that is 

,JV-1|G(0) - 6 

With G(0) = 1, 

Differentiating, we get 

C " - ' C ; = ^ . (2.13) 

G(e)Hl-pV""' 

JV-2 

5(e) = -N^IVL i1 - ^ ^ 

and, replacing g = — f we find, 

N-2 

1 b I b \ N~x 

as the probability distribution function of self-protection in a mixed Nash equilibrium. 

Case c < pL: Now let us consider a game with insurance under the more reasonable as­

sumption c < pL; that is, insurance is not overpriced compared to expected losses. Dom­

inance arguments indicate that a Nash strategy must be of the form (e, s) e {(e, 0), e > 

0}U{(0,1)}. 

Let q be the probability that a player chooses strategy (e, s) = (0,1). That is, F(0) = q. 

Because insurance is independent of protection, we can reuse Eqn. (2.13) with the new 
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boundary G(0) = 1 — q: 

G{e)={il-q)N-1-^N~1 (2.15) 

However, since we are now including self-insurance, a second condition must hold. The 

payoff for strategy (e, s) = (0,1) must equal the payoff for all other strategies. 

Specifically, we may compare payoffs for strategies (e, s) = (e, 0) and (e, s) = (0,1) 

which gives, by continuity as e —* 0, 

pL(l - qf'1 = c . (2.16) 

Together Eqs. (2.15) and (2.16) yield: 

i 
c — be\ N~1 

F(e) = 1 - G(e) = 1 ' X 

pL 

which, differentiating, gives 

1 b fc-be\^~l 

This allows us to compute how often strategy (e, s) = (0,1) is played: 

i 

, = f (0) = l - ( £ ) " " . (2.18) 

Result: In the weakest-target game with an attacker of infinite strength, a mixed Nash 

equilibrium strategy exists. The individual's strategy is given by Eqs. (2.17) and (2.18). 

Also note that, per Eqn. (2.17) and continuity arguments, the upper bound for protection 

effort is given by emax = c/b, which can be less than 1 when protection costs dominate 

insurance costs b > c. 
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Increasing number of players N: From Eqn. (2.18), we can directly infer that an increase 

in the number of participating players decreases the probability that a full self-insurance 

strategy is chosen. When N grows large, q tends to zero, which means that players increas­

ingly prefer to gamble in order to find a protection level that leaves them unharmed. 

2.5.5 Weakest-target security game (with mitigation) 

Let us assume that there exists a Nash equilibrium where 0 < K < N players who 

satisfy e* = e0 = min(ej, e_j), while (N — K > 0) players satisfy ej > e0. We can show 

that such an equilibrium does not exist and that players rather congregate at the highest 

protection level if certain conditions are met. Due to space constraints, we will only sketch 

the analysis of this equilibrium. By computing the partial derivatives dUi/dsi and dUi/deu 

and discriminating among values for e* and Sj, we get the following results. 

Result: In contrast to the infinite strength weakest-target game we find that a pure Nash 

equilibrium may exist. 

• Full protection eq.: If b < c we find that the full protection equilibrium (\/i, (e,, Sj) = 

(1,0)) is the only possible pure Nash equilibrium. 

• For b > ewe can show that no pure Nash equilibrium exists. 

• There are no pure self-insurance equilibria. 

Mixed strategy equilibrium To complement this analysis we also present the mixed strat­

egy equilibrium. The derivation is similar to the one given by Eqs. (2.12-2.18), however, 
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with an additional substitution step. This gives the resulting distribution, 

/ c — be \ N~1 

so that 
AT-2 

" J V - 1 
f W = _ i _ ( (P- c)pL \ ( c-be 
JK ' N - 1 \pL2(l - e )V \pL(l - e) 

Interestingly, the probability of playing (e, s) = (0,1) remains 

i 
/ c \ N~1 

q = F(0) = 1 - I — J (2.20) 

Note that if c < 6 there is a zero probability that e = 1 will be chosen by any player. The 

upper bound for protection effort is given by emax = c/b. 

Result: In the weakest-target game with an attacker of finite strength we find that a mixed 

Nash equilibrium strategy exists. The relevant equations are given in Eqs. (2.19-2.20). 

2.6 Identification of social optima 

Organizations and public policy actors frequently attempt to identify policies that pro­

vide the highest utility for the largest number of people. This idea has been operationalized 

with the social optimum analysis. It states that a system has reached the optimum when the 

sum of all players' utilities is maximized. That is, the social optimum is defined by the set of 

strategies that maximize ]TV Ui. Consider TV players, and denote by $(ei, S i , . . . , eN, sN) 

the aggregate utility, $(ei, S i , . . . , eN, sN) = ^ - Ui(ei, Sj). The social optimum maxi­

mizes $(SJ, ti) over all possible (s*, e*) G [0,1]2N. Because enforcing a social optimum 
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may at times be conflicting with the optimal strategy for a given (set of) individual(s), to 

enforce a social optimum in practice, we may need to assume the existence of a "social 

planner" who essentially decides, unopposed, the strategy each player has to implement. 

2.6.1 Total effort security game 

Summing the utility given by Eqn. (2.2) over i, we realize that <&((ej, Si)ie{i,...,jv}) can 

be expressed as a function of two variables, E = J2i e* and S = ^ Sj. $ is continuous and 

twice differentiable in E and S, and the second derivative test tells us that the only possible 

extrema of $ are reached for the boundary values of E and S, that is (E, S) e {0, N}2. In 

other words, the only possible social optima are 1) passivity (for all i, (e ,̂ s,) = (0,0)), 2) 

full protection (for all i, (e*, Sj) = (1,0)), or 3) full insurance (for all i, (e ,̂ s,;) = (0,1)). 

As long as one of b or c is strictly positive, a social planner will never advise agents to 

invest into protection and self-insurance at the same time. 

By comparing the values of $ in all three cases, we find that if b < pL and b < c then 

all agents are required to exercise maximum protection effort (ei5 Sj) = (1,0). With c < pL 

and c < b all agents will self-insure at the maximum possible (e ,̂ Sj) = (0,1). A social 

planner will not encourage players to invest in security measures if they are too expensive 

(c > pL and b > pL). 

Result: In the total effort security game we observe that in the Nash equilibrium there 

is almost always too little protection effort exerted compared to the social optimum. In 

fact, for a wide range of parameter settings no protection equilibria exist while the social 
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optimum prescribes protection at a very low threshold. 

• Protection: Except for very unbalanced parameter settings (i.e., pL > bN and c > 

b + pL^^) agents refrained from full protection. Now full protection by all agents 

is a viable alternative. 

• Self-insurance: Full self-insurance now has to compete with full protection effort 

under a wider range of parameters. 

• Passivity: Agents remain passive if self-insurance is too expensive (c > pL). How­

ever, we find a substantial difference with respect to protection behavior. Agents 

would selfishly refrain from protection efforts if pL < bN since they would only be 

guaranteed the iV-th part of their investments as returns. Now the social planner can 

ensure that all agents protect equally so that it is beneficial to protect up until b < pL. 

2.6.2 Weakest-link security game 

In the weakest-link game agents are required to protect at a common effort level to be 

socially efficient. We compute $ by summing Eqn. (2.3) over i, and can express $ as a 

function of e*, s* and e0 = min^e,). In particular, for all i, we obtain d^/dsi = pL(l — 

e0) — c. Studying the sign of <9$/<9SJ as a function of e0 tells us that, if b < c and b < pL the 

social planner requires all agents to protect with maximum effort (e ,̂ s;) = (1,0). If c < b 

and c < pL the social planner requires all agents to self-insure (e ,̂ Sj) = (0,1). Finally, 

the Nash equilibrium and social optimum coincide when security costs are high. Agents do 
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not invest in protection or self-insurance if b > pL or c > pL. 

Result: The availability of self-insurance lowers the risk of below-optimal security in the 

Nash equilibrium since agents have an alternative to the unstable Pareto-optimal protection 

equilibrium. From the analysis of the weakest-link game with many agents we know that 

deviation from the Pareto-optimal highest protection level is very likely. A social planner 

can overcome these coordination problems. 

• Protection: The Pareto-optimal Nash equilibrium coincides with socially optimal 

protection. However, the protection level would likely be lower in the Nash case due 

to coordination problems. 

• Self-insurance: The self-insurance equilibria are equivalent for the Nash and social 

optimum analysis. 

• Passivity: A social planner cannot expand the range of parameter values at which it 

would be socially beneficial to protect or self-insure while passivity would be pre­

scribed in the Nash equilibrium. 

2.6.3 Best shot security game 

We compute the social optimum by summing Ui given in Eqn. (2.4) over i, yielding 

that $ can be expressed as a function of e*, s^ and e*. It is immediate that, to maximize 

$, one should pick e* = 0 for all i, except for one participant j , where ej = e* > 0. We 

then get dPhi/dsi = pL(l — e*) — c, which tells us under which conditions on e* (and 
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consequently on b, c, and pL) self-insurance is desirable. 

We find that if b/c < N (i.e., protection is not at a prohibitive cost compared to insur­

ance and/or there is a reasonably large number of players), the social optimum is to have 

one player protect as much as possible, the others not protect at all, and no one insures. In 

practice, this may describe a situation where all participants are safely protected behind an 

extremely secure firewall. If, on the other hand b/c > N, which means there are either few 

players, insurance is very cheap compared to protection, then the best strategy is to simply 

insure all players as much as possible. 

Result: In the best shot security Nash outcome there is almost always too little effort 

exerted compared to the social optimum. Exceptions are few points in which full self-

insurance remains desirable for the social planner and all agents remain passive. 

• Protection: Surprisingly, while protection is not even a Nash strategy we find that a 

social planner would elect an individual to exercise full protection effort. 

• Self-insurance: Full self-insurance by every player is only desirable if protection 

costs are large. Therefore, for most cases the strategy of a social planner will not 

coincide with the only Nash equilibrium strategy. 

• Passivity: In the Nash equilibrium agents are also too inactive. Passivity is highly 

undesirable from a social planner's perspective. Only if NpL < b no agent will be 

selected to exercise maximum protection effort (while self-insurance might remain 

an option). 
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It is important to note that the social optimum variation that requires full protection by 

one individual results in the whole population being unharmed, since one highly secure 

individual is enough to thwart all attacks. Therefore, it is easy to see that protection is 

extremely desirable from a planners perspective. Out of the three classical public goods 

games with homogeneous agents the best shot game can benefit the most from a guiding 

hand. 

2.6.4 Weakest-target security game (without mitigation) 

We compute the social optimum by using Eqn. (2.8), assuming that 1 < K < N players 

pick e0 = min,(ej). By studying the variations on $ as a function as ê , as a function of K, 

and as a function of ŝ  (for both the K players picking e0 and the remainder of the players), 

we find that in the weakest-target game without mitigation a social planner would direct a 

single player to exacerbate no protection effort. 

Essentially, this player serves as a direct target for a potential attacker. However, as 

long as c < pL the player would be directed to maximize self-insurance (e ,̂ s^ = (0,1). 

If insurance is too expensive (c > pL) then the social planner would prefer to leave the 

player uninsured (e ,̂ Sj) = (0,0). This strategy is independent of the cost of protection. 

The remaining N — 1 players have to select their protection effort as e; = e > 0 (as small 

as possible). These players will not be attacked, and therefore will set their self-insurance 

to the possible minimum (e,0). Passivity by all players is never an option in the social 

optimum. 
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Result: A social planner can easily devise a strategy to overcome the coordination prob­

lems observed in the Nash analysis for the weakest-target game with mitigation. We found 

that no pure Nash strategy exists and, therefore, had to rely on the increased rationality 

requirement for entities to play a mixed strategy.,8 The average payoff for each player in 

the social optimum is considerably higher compared to the mixed Nash equilibrium. 

Understandably, without side-payments the node with the lowest protection effort is 

worse off compared to his peers. However, the social planner could choose to devise a 

so-called "honeypot" system with the sole goal of attracting the attacker while only suffer­

ing a marginal loss. A honeypot is a computer system (or another device) that is explicitly 

designed to attract and to be compromised by attackers. It serves usually a double purpose. 

First, it will detract attention from more valuable targets on the same network. Second, if 

carefully monitored it allows gathering of information about attacker strategies and behav­

iors, e.g., early warnings about new attack and exploitation trends [173]. 

An interesting aspect of the social optimum solution is the question how the individual 

is selected (if a honeypot system cannot be devised). Obviously, a social planner might 

be able to direct an individual to serve as a target (in particular, if c < pL). However, 

if insurance costs are large being a target requires an almost certain sacrifice (dependent 

on the value of p). In anthropology and economics there are several theories that relate 

to an individuals willingness to serve as a sacrificial lamb. Most prominently, altruism 

and heroism come to mind. Simon also introduced the concept of docility. This theory 

Economists are generally cautious regarding the assumption that individuals can detect and adequately 
respond to mixed strategy play by opponents [71,142,195]. 



www.manaraa.com

59 

refers to an individual's willingness to be taught or to defer to the superior knowledge of 

others [198]. 

2.6.5 Weakest-target security game (with mitigation) 

We adopt the same strategy for finding $'s maximum as in the unmitigated case - that 

is, summing Eqn. (2.6) over i, and then studying the variations of $ over K, Si and e0. 

The first observation is that the social planner might prescribe the same strategy as in 

the case of the weakest-target game without mitigation. However, now the planner has a 

second alternative. Since an attacker will not be able to compromise players if they are fully 

protected we find that (e*, s*) = (1,0) for all TV players is a feasible strategy. The tipping 

point between the two strategies is at Nb < c. If this condition holds the social planner 

would elect to protect all machines in favor of offering one node as honeypot and investing 

in its self-insurance. Note that again we find that if protection and self-insurance are ex­

tremely costly the planner will elect to sacrifice one entity without insurance. Passivity is 

not a preferable option. 

Result: Compared to the weakest-target game without mitigation the social planner is 

better off if protection is cheap. Otherwise the planner has to sacrifice a node with or with­

out self-insurance. Interestingly, while compared to the pure Nash equilibrium outcome the 

social planner can increase the overall utility in the network we find that security expen­

ditures are lowered. In the Nash equilibrium agents were willing to fully protect against 
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threats as long as [b < c). 

The last observation also holds for the mixed strategy case in both weakest-target 

games (with or without mitigation). That is, agents exert more effort in the Nash equilib­

rium (except when Nb < cfor the game with mitigation). 

2.7 Practical implications 

The results we obtained, and notably the disconnect between social optima and Nash 

equilibria we observed, lead to a number of remarks that may prove relevant to organi­

zational strategy. However, we want to preface this discussion by pointing out that our 

analysis is a first comparison of different security games with two security options under 

common, but restrictive assumptions.9 

Most notably, we assume agents to be risk-neutral providers of the public protection 

good. In our game formulation we also simplified cost of protection (and insurance) to be 

linear. Including different risk preferences, as well as uncertainty and limited information 

about important parameters of the game would be important steps towards a sensitivity 

analysis of our results. Shogren found, for example, that risk-averse agents will increase 

their contributions if information about other agents actions is suppressed [197]. Others, 

e.g., [188], have obtained more nuanced results. We defer a more extensive analysis of 

such phenomena to future work, but believe that the main trends and differentiating features 

9Rue and Pfieeger provide an informative overview of modeling assumptions for a number of cybersecu-
rity investment models [184]. 
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between security games we observed remain largely unchanged. 

Security scenario identification: We find that security predictions vary widely between 

the five different games. Similarly, policies set by a social planner do not only yield dif­

ferent contribution levels but may also switch the recommended security action from pro­

tection to self-insurance and vice versa. Chief Security Officers' tasks involve a careful 

assessment of threat models the company is faced with. 

We want to emphasize that an integral part of the threat model should be an assessment 

of the organizational structure including system resources and employees. Similarly im­

portant is a detailed consideration whether resources are protected independently or by an 

overarching system policy. For example, replication, redundancy and failover systems (that 

automatically switch to a standby database, server or network if the primary system fails 

or is temporarily shut down for servicing) should most likely not be treated as independent 

resources. 

Managers should consider how the organizational structure of resources matches poten­

tially existing policies. For example, we can see that a policy that requires full protection 

by every individual is sub-optimal if the most likely threat and organizational structure fits 

the description of a best shot game. Contributions resources are squandered and are likely 

to deteriorate. Not to mention that employees may simply ignore the policy over time. See, 

for example, recent survey results that highlight that 35% of white-collar employees admit 

to violations of security policies [114]. 

Selection of defense posture: A security professional might be faced with an unidenti-
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fiable organization and system-policy structure. However, we want to highlight that our 

research allows a more careful choice between security options if managers can redesign 

organizations and policies. For example, the choice between a system-wide firewall and 

intrusion detection system versus an individual alternative has important implications on 

how incentives drive security-relevant behavior over time. Individual systems will better 

preserve incentives, however, might have negative cost implications. The same choice ap­

plies between the availability of backup tools and protective measures. 

Leveraging strategic uncertainty: The example of the weakest-target game shows the 

importance of the degree of dependency between agents. We show that in larger organiza­

tions a much lower average level of self-insurance investments will be achieved because the 

strategic dependence between actors is reduced. However, in turn more agents will elect to 

protect their resources (e* > 0 for more players). In contrast, agents in small groups will 

respond to the increasing strategic uncertainty caused by the increased interdependency by 

self-insuring their resources more often. 

Introducing a social planner into the weakest-target game completely removes strategic 

uncertainty and leads to both reduced self-insurance and protection investments. This ap­

parent paradox emphasizes that higher security investments do not necessarily translate in 

higher security - but instead that how the investments are made are crucial to the returns. 
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2.8 Summary 

We consider the problem of decision-making with respect to information security in­

vestments. To that effect, we model security interactions through a careful selection of 

games, some established (weakest-link, best shot, and total effort) and some novel (weakest-

target, with or without mitigation). All of these games offer players two independent de­

cision parameters: a protection level, e, which determines the level of security a player 

chooses for his resources; and a self-insurance level, s, which mitigates losses, shall a suc­

cessful attack occur. We postulate that the five games considered cover a vast majority of 

practical security situations, and study them both from a rational agent's perspective (Nash 

equilibrium analysis) and from a central planner's view (social optimum analysis). 

Our main findings are that the effects of central planning compared to laissez-faire 

considerably differ according to the game considered. While in a number of traditional 

cases borrowed from the public good literature, we observe that a central planner may 

increase the average protection level of the network, we also note that strategic decisions are 

highly impacted by the level of inter-dependency between the actions of different players. 

In particular, we found that the common wisdom that having a central planner who 

decides upon security implementation always yields higher protection contributions by in­

dividual players does not hold. Indeed, it may at times be much more advantageous from an 

economic standpoint to invest in self-insurance instead of protecting systems, or to select 

a few, unprotected, sacrificial lambs in order to divert the attention of potential attackers. 

This is particularly the case in situations which exhibit a "strategic uncertainty" due to a 
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very strong correlation between the actions of different agents, for instance, in our weakest-

target game where the least secure player is always the one attacked. 

With the analyses in this work we aim for a more thorough understanding of the ecol­

ogy of security threats and defense functions an individual or organization faces and has to 

respond to. We have generalized and developed new models that represent vastly different 

security scenarios and will call for different actions. As Hirshleifer observed [107] a secu­

rity practitioner will be presented with "all kinds of intermediate cases and combinations," 

e.g., social composition functions involving all of these five rules as well as other not iden­

tified yet. Some minor variations would be the "location of the top decile, or the total of 

the best three shots, or the average of the best and worst shots, or the variance or skewness" 

etc. 
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Chapter 3 

Security diversity: Heterogeneous agents 

In this chapter, we derive Nash equilibria for the five different cases of security games 

with the focus to understand how the inclusion of heterogeneous actors influences predic­

tions compared to a model with representative agents. 

In the modeling of economic phenomena, added complexity (e.g., adding agents with 

more diverse tastes) does not always change strategic predictions substantially. On the 

other hand, we expect that heterogeneity impacts the actions of agents in security games in 

different ways, for example by: 1) Negotiating the trade-off between protection and self-

insurance, 2) Highlighting certain strategies and focal points due to the inherent differences 

in the agent population, 3) (De-)stabilizing equilibrium predictions derived in the homoge­

neous case. We expect several conclusions from the homogeneous case to remain relevant. 

But as Hartley [99] argued "representative agents models conceal heterogeneity whether 

it is important or not." This analysis aims at pinpointing key differences and discuss their 
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implications. 

The first contribution of the present chapter is to discuss arguments for and against 

homogeneity in security models. 

Second, we extend and generalize models for homogeneous agents (as given in Chapter 

2) to the significantly more complex heterogeneous agents case. 

The third contribution is to exploit the results from the analysis to evaluate the impact 

of possible (centralized or distributed) intervention policies aiming at reaching an outcome 

beneficial to society as a whole. 

The rest of this chapter is organized as follows. We elaborate in Section 3.1 on the 

relationship of our work with related research, and extend our game-theoretic models to 

take into account agent heterogeneity in Section 3.2. We analyze Nash equilibria stemming 

from these games in Section 3.3, and use this analysis to look into possible intervention 

mechanisms in Section 3.4. We conclude in Section 3.5. 

3.1 Background: Heterogeneity in system security 

The salient feature of the research presented in this chapter is to consider security as a 

combination of private and public goods in the context of heterogeneous agents. 

Both the homogeneous and heterogeneous cases are relevant to security analysis. Ho­

mogeneous agents are characteristic of large populations following the same practices and 

choices by end-users, for instance, when most security decisions (e.g., patching) are auto-
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mated, and all users run similar software. The lack of diversity, in particular in the market 

for operating systems, lends credibility to such scenarios [79], and is cited as a strong moti­

vator for developers of malicious code to exploit the resulting correlated risks or to cheaply 

repeat attacks. 

However, there are strong reasons to compare our earlier findings (from Chapter 2) with 

a model that includes heterogeneous agents into a model of security decision making. 

Security through diversity. Recent technical proposals aim to achieve higher resilience 

to attacks by introducing diversity in network and protocol design. For example, Zhuang 

et al. report of a set of formal analysis tools that introduce heterogeneity in multi-person 

communication protocols [220]. O'Donnell and Sethu develop and test distributed algo­

rithms optimizing the distribution of distinct software modules to different nodes in a net­

work [164]. Research in IT economics has evaluated the decision making of a firm when 

faced with the option of increased diversity in its software base. In Chen et al, the decision 

for increased heterogeneity depends largely on the assumed risk attitudes of the organiza­

tion [45]. Investments into heterogeneity will change the expectation of losses and attack 

probabilities, but they also impact the cost of protection and self-insurance. 

Chameleonic threats. Increased diversity is not a sufficiently strong protection against 

correlated security threats anymore. Already in 1995 the first macro viruses started target­

ing MS office on all compatible systems.1 Modern cross-platform malware is capable of 

targeting also different operating systems. For instance, Linux-Bi-A/Win-Bi-A is written in 

JThe macro virus (Winword-Concept) targeted Microsoft Word on Apple and Microsoft systems. For 
more details see: h t t p : / / w e b . t e x t f i l e s . c o m / v i r u s / m a c r o 0 0 3 . t x t . 
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assembler and able to compromise Windows and Linux platforms. Malicious code is also 

capable of crossing the boundary between desktop and mobile devices. For example, the 

hybrid pathogen Nimda, a worm that can spread as a virus as well, has successfully propa­

gated on different media such as floppies, portable hard drives, and USB pen drives [216]. 

Potentially even more disruptive is malware carrying multiple exploit codes at once. For 

example, Provos et al. report that Web-based malware often includes exploits that are used 

'in tandem' to download, store and then execute a malware binary [174]. These trends 

render users vulnerable to propagated threats if owners of different IT systems perceive 

protection as too costly or ineffective. 

Heterogeneous investments patterns. Different organizations follow distinct patterns 

of IT investment. Parts of organizations often depend on legacy systems including weakly 

protected systems, or "boat anchors" with limited value to an organization [217]. Such 

legacy systems can allow skilled attackers to intrude a network. More generally, organi­

zations and end users justify security investments with different assumptions about poten­

tial losses and probabilities of being attacked. This often depends on different knowledge 

about threats and means of protection and insurance [3]. This diversity is reflected in users' 

choices and security practices [121,162]. Similarly, security decisions can follow different 

security paradigms often reflected in different organizational structures, for instance remote 

replication vs. offsite tape storage. 

Finally, heterogeneous agents have notable implications in terms of policy design. For 

instance, Bull et al. [38] observe the state of heterogeneous networks and argue that no 
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single security policy will be applicable to all circumstances. They argue that, for a system 

to be viable from a security standpoint, individuals need to be empowered to control their 

own resources and to make customized security trade-offs. 

In this chapter, we formally explore such theses, by studying individuals' incentives in 

non-cooperative games. In particular, we focus on the" impact of heterogeneous agents on 

system security in different network structures. 

3.2 Modification of the basic model 

Different from our previous exposition in Chapter 2, protection costs per unit are not 

necessarily identical for each entity, and, while in the formal analysis that follows we make 

the assumption that all decisions are made simultaneously, we later discuss the impact of 

relaxing the synchronization assumption. 

Each of N G N players receives an individual endowment Mi. If she is attacked and 

compromised successfully she faces a loss L^ Further, bi > 0 and Q > 0 denote the unit 

cost of protection and insurance, respectively. 

The generic utility function of Player i can now be represented as: 

Ui = Mi- pLi(l - Si)(l - H(ei, e_i)) - b^ - ast . (3.1) 
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Figure 3.1: Reaction functions for a two-player total effort game. Bold lines and dots 
indicate potential Nash equilibria. 

3.3 Nash equilibrium analysis 

In this section, we derive Nash equilibria for the five different cases of security games 

with heterogeneous agents. 

3.3.1 Total effort security game 

The total effort game yields considerably different results depending on the number of 

players involved. 

Two-player game Let us first start the discussion for the simple case N — 2. From the 

game description given by Eqn. (2.2), we get E/i(ei,"Si).= Mj — pLi(l — si)(l — (ei + 

e2)/2) — b\e\ — c\S\ for Player 1. The second partial derivative test indicates that there 
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is no local extremum, so that the only possible maxima of U\ are given by Ui(0,0) = 

Mi -pL.il - e2/2), £/i(l,0) = Mx - pL^l/2 - e2/2) - &i, C/i(0,l) = Mx - cl5 or 

*7i(l, 1) = Mi - 6X - ci. With 6i > 0, we immediately see that 11.(0,1) > C/i(l, 1), which 

tells us that fully insuring and protecting at the same time is a strictly dominated strategy 

for Player 1. The passivity strategy (e;, Sj) = (0,0) dominates the "protect-only" strategy 

(ei, s^ = (1,0) when b. > pLx/2. 

Assuming b. < pLi/2, the "protect-only" (1,0) strategy dominates the "insure-only" 

(0,1) strategy for Player 1 if and only if (all quantities being assumed to be defined): 

ea > 1 - 2 ^ 1 . (3.2) 
pLi 

A similar rationale yields the corresponding conditions for Player 2, leading to the reaction 

functions e. = ri(e2) and e2 = r2(ei) plotted in Figure 3.1. By definition, Nash equilibria 

are characterized by fixed points e. = 7"i(e2) = e2 = r2(ei). From the above analysis 

summarized in Figure 3.1, this occurs for two values: when both agents fully protect and 

when both agents abstain from investing in protection. We note that both fixed points are 

stable, meaning that, if they are reached, minimal deviations in the strategy of one player 

are unlikely to perturb the actions of the other player. 

Result: The two-player total effort security game with heterogeneous agents presents the 

following equilibria: 

• Full protection eq.: If b\ < pLi/2, b2 < pL2/2 (protection costs are modest for 

both players), and the initial values ei(0) and e2(0) satisfy either ei(0) > 1 — 2(c2 — 

http://-pL.il
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62)/(pL2) ore2(0) > l—2(ci—bi)/(pLi) (at least one player is initially fairly secure, 

or at least one player faces very high self-insurance costs) then the (only) Nash equi­

librium is defined by both players protecting but not insuring, that is, (e ,̂ Sj) = (1,0). 

• Multiple eq. without protection: If the conditions above do not hold, then we have 

an insecure equilibria. Both players converge to e1 = 0 and e2 = 0. Their respec­

tive investments in self-insurance depend on whether their self-insurance premium is 

smaller than their potential losses: a player will fully insure if and only if q < pLi, 

and will be passive otherwise. 

A particularly interesting feature of the two-player version of the game is that expensive 

self-insurance or protection costs at either of the players directly condition which equilib­

rium can be reached. For instance, if one of the players has to pay a very high self-insurance 

premium in front of its protection costs, she will elect to protect, likely leading the other 

player to protect as well. Conversely, if either of the players faces a high protection pre­

mium (bi > pLi/2), the game will likely converge to an equilibrium without protection 

efforts. As we discuss later, this property can be used by some form of intervention to have 

the game converge to a desirable equilibrium. 

More generally, in this game, each of the two players generally tracks what the other 

is doing. When moves are made perfectly simultaneously, this may result in oscillations 

between insecure and secure configurations. The only exception to this tracking behav­

ior occurs when one player faces high security costs and a low self-insurance premium, 

while the other faces the opposite situation (low security costs, very high self-insurance 
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premium). In such a case, the game converges to the first player insuring, and the second 

player protecting. In short, extreme parameter values allow to remove network effects in 

this game. 

iV-player game (N large) In the more general case iV > 2, we first notice that, for a 

security strategy to be meaningful, we need to have 6j < pLi/N. This means that, as 

the number of players increases, individual protection costs have to become very small, or 

expected losses have to considerably increase. Failing that, self-insurance or passivity is 

always a better option. 

Second, from Eqn. (2.2), we obtain that Eqn. (3.2) is generalized to 

as a condition for player % to select a protection-only strategy as opposed to an self-insurance-

only strategy. Eqn. (3.3) tells us that, for large values of TV, changes in a single player's 

protection strategy are unlikely to have much of an effect on the other players' strategies. 

Indeed, each player reacts to changes in the average protection level over the (N — 1) other 

players. 

This observation brings the question of exactly how robust the iV-player game is to a 

change in the strategy played by a given individual. Are "domino effects" possible, where 

changes in a single player's strategy, albeit with a minimal effect on all other players, lead 

another player to switch strategies, and eventually to large groups changing their plays? 

To help us answer this question, let us consider N > 2, and K < N arbitrary players 

that are initially (at time 0) unprotected. For instance, assume without loss of generality 
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that Players 1 , . . . , K are initially unprotected, and that 

c2 ~ b2 c3 - b3 cK - bK 

pL2 ~ pL3 - ' - - - piK 

Further assume that at a later time t > 0, Player 1 switches her strategy to full protection, 

that is, ei(i) = 1. Assuming all players may have an incentive to protect (i.e., for all i, 

bi < pLi/N), Player 2 would also switch to full protection only if 

1 c2 - b2 i-T5^e i(t)>l 

that is, only if 

j V - 1 ^ J W N -1 pL2 

1 c2 - 62 

7 V - l ^ ^ n y J V - 1 N-l pL2 ' 

which reduces to 

1 c2 - b2 
— EM») + j r T > l - j v r T ' J V - 1 ^ Jy ' N-l N-l pL2 

3>K y 

Player 2's switch causes Player 3 to switch too only if 

1 c3 - b3 

(3.4) 

that is, 

3>K y 6 

From Eqs. (3.4) and (3.5) we get 

c2 -b2 _ c3-b3 

pL2 pL3 

Iterating over the K players that are initially not protecting, we get: 

max — mm —-— < K — 1 . 
2<i<K phi 2<i<K pLi 
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We can follow an identical derivation for the case where the K players switch from a protec­

tion strategy to a non-protection strategy. We then obtain the following necessary condition 

for "domino effects" to occur over K players, that is a switch in Player 1 's strategy causing 

a switch in the strategy of K players: 

max 
(k-bi d — bj 

mm 2<i<K pLi 2<i<K pL 
<K-1 (3.6) 

Result: We have derived a stability measure of the heterogeneity of a total effort security 

game with N agents (Eqn. (3.6)). The more heterogeneous the players are, the more un­

likely Eqn. (3.6) is to hold for large values of K. In other words, the more heterogeneous 

a system is, the more likely it is to be resilient to perturbations due to a single individual 

changing strategies. 

3.3.2 Weakest-link security game 

Here again, we start by considering a two-player game. Computing partial derivatives 

in ei and s; from Eqn. (2.3), we observe that each player chooses either (e;, Sj) = (0,1) 

(self-insurance strategy) or (e^ S*) = (min,^* e,-, 0) (protection strategy, where in the two-

player version of the game m i n ^ e,- is naturally equal to the protection value chosen by 

the other player) in order to maximize their utility function. 

Looking at the payoffs that can be obtained in both cases leads us to the reaction func­

tions of both players, which we plot in Figure 3.2. In the figure, we see that a fixed-point 

is attained when ex = e2 = 0 (self-insurance-only equilibria) and when both e\ and e2 are 



www.manaraa.com

76 

(PiLfC,y(PiLrbi) l e i 

Figure 3.2: Reaction functions for a two-player weakest-link game. Bold lines and dots 
indicate potential Nash equilibria. 

greater than max{(pLi - c1)/(pL1 - &i), (pL2 - c2)/(pL2 -b2)}. 

Result: Generalizing to N players, we obtain the following distinction for the weakest-link 

security game: 

• Full protection eq.: If, for all i, pLi > bi, and either 1) pLi < Q, or 2) pLi > Ci and 

e(0), the minimum of the security levels initially chosen by all players, satisfies 

e(0) > max {{pU - Cj)/(pLj - bi)} , 
Ki<N 

then we have a Nash equilibrium where everyone picks (e(0), 0). 

Multiple eq. without protection: All players select ê  = 0 if the conditions above 

do not hold. The value of self-insurance they select depends on their respective 
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valuations. Players for whom self-insurance is too expensive (pL; < d) do not 

insure, with s% = 0, while others choose full self-insurance, that is Sj = 1. 

The likelihood of reaching a full protection equilibrium is conditioned by the player which 

has the largest difference between protection and self-insurance costs relative to its ex­

pected losses. In particular, it only takes one player with an self-insurance premium smaller 

than its protection cost (bi > Q) to make the full protection equilibrium unreachable. 

Hence, when N grows large, we expect protection equilibria to become more and more 

infrequently observed. 

3.3.3 Best shot security game 

Looking at the variations of the payload function U given in Eqn. (2.4) as a function of 

e, and s* tells us there are three possibilities for maximizing U: a passivity strategy (0,0), 

a secure-only strategy (1,0) and an insure-only strategy (0,1). 

Weget£/i(0)0) = M i-pL i( l -max{e_ i}),£/ i( l ,0) = M i-6 i ,andC/ i(0,l) = M i - c i . 

We immediately notice that 6, > c* leads Player i to never invest in protection: either the 

player is passive, or she insures. If, on the other hand b{ < Q, then player i chooses a 

protection strategy over a passivity strategy if and only if (bi assumed greater than 0) we 

have max{e_j} < 1 — bi/pLi. We plot the reaction functions, in a two-player case, in 

Figure 3.3. 

Result: For the two-player best shot security game we can identify the following equilib­

ria: 
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* , 

p . L 

e i = r,(e^) 

e 2 = r2(e,) 

0 1"^/P2L 1 

Figure 3.3: Reaction functions for a two-player best shot game. Bold dots indicate po­
tential Nash equilibria. Protection costs are assumed here to be smaller than self-insurance 
costs for both players. 

• Protection eq.: In contrast to the homogeneous case a protection equilibrium does 

exist. The Nash equilibrium is a free-riding equilibrium where one player protects, 

and the other does not. 

• Multiple eq. without protection: If bi > Ci for all player i individuals will choose to 

self-insure or remain passive. 

In the homogeneous version of the game, we had noted that these Nash equilibria were 

not reached in a synchronized game with iV players, as players would constantly oscillate 

between free-riding and protecting (see Chapter 2). With heterogeneous players, however, 

it is possible to reach a Nash equilibrium. Indeed, if the initial protection levels chosen 

satisfy max{e_j(0)} > 1 — h/pLi for all players but one, this last player will be the 
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only one to secure, while everybody else will defect. Note that there should be only one 

player choosing to secure for a Nash equilibrium to be reached - as soon as at least two 

players decide to protect, each will defect in the next round hoping to free-ride on the 

other protecting players. In other words, if there exists a unique i for which the initial 

constellation of protection levels satisfies 

max{e_i(0)} < 1 - bxjpU , (3.7) 

then a Nash equilibrium where all players free-ride on player i is reached as long as fej < Q. 

This situation could happen when only one player faces disproportionate losses compared 

to other players, or her security costs are very small. 

Result: When protection levels are initially randomly set, protection equilibria in the best 

shot game are increasingly unlikely to happen as the number of players N grows. 

Assume that the initial protection levels, e,(0) for 1 < i < N are set independently 

and at random, that is, that they can be expressed as a random variable with cumulative 

distribution function F. Then for any Player k, the probability that efc(0) < 1 — h/pLi is 

simply F ( l — bi/pLi). It follows that Eqn. (3.7) is satisfied for Player i with probability 

F(l - bi/pLi)*-1. 

Next, we want Eqn. (3.7) to be violated for all players other than i. Eqn. (3.7) is defeated 

for a given Player k with probability 1 — F( l — bk/pLk)N~l- Consequently, it is defeated 

for all Players j ^ i with probability Y[j¥:i(l - F ( l - bj/pL^'1). 
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It follows that the probability pi that Eqn. (3.7) is satisfied only for Player i is given by 

/ xJV-l / / , x N-l\ 

A = *•(!-&) 11,^(1-^(1-^) )• 

Then, the probability that a protection equilibrium can be reached is given by X)iA> 

since the p^s characterize mutually exclusive events. To simplify notations, let Xi = 

F (1 — ^ - ) . Rearranging terms gives 

z«=s;n(i-*ri)-'vn(i-*r)-
i i j^i j 

Let k = arg max; I Ylj^ (l — xf_1) >. Then we have 

E « ^ w n ( i - < - i ) - j v n ( i - < - 1 ) . 
i j^k j 

which gives us, after rearranging 

which tends to zero as N increases, as soon as Xk = F(l — bk/pLk) < 1. 

This is notably the case if we assume a function F strictly monotonous increasing on 

[0,1], and positive security costs (bi > 0) for all players. 

3.3.4 Weakest-target security games 

As in the homogeneous case (Chapter 2, Nash equilibria for the weakest-target game are 

quite different depending on whether or not we are considering that mitigation is possible. 

Without mitigation. In the weakest-target game without mitigation, we have reported in 

Chapter 2 that, in the homogeneous case where bi = b, Ci = c, and Li = L, there are no 
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pure strategy Nash equilibrium. The proof can" be extended to the heterogeneous case, as 

we discuss next. 

Let us assume that the minimum protection level over all players is set to e < 1. Then, 

we can group players in two categories: those who play e, = e, and those who set ê  > e. 

By straightforward dominance arguments coming from the description of the payoffs in 

Eqn. (2.6), players who select e; > e select ê  = e + e, where e > 0 is infinitesimally small, 

and Si = 0 . Let 

Players who play ê  = e would actually prefer to switch to e + 2s. Indeed, the switch in 

strategies allows a payoff gain of 

Ui(e+ 2e,0) -Ui(e,Si) = -2biS + pL^l - s{) + ast > 0 . 

Hence, this strategy point is not a Nash equilibrium. It follows that the only possible 

equilibrium point would have to satisfy ej = 1 for all ê . However, in that case, all players 

are attacked, which ruins their security investments. All players therefore have an incentive 

to instead select e$ = e = 0, which, per the above discussion, cannot characterize a Nash 

equilibrium. 

Result: In the weakest-target game without mitigation we find that pure Nash equilibria 

for non trivial values ofbir p, Li and Ci do not exist. 

With mitigation. In the weakest-target game with mitigation, we showed that, with 

homogeneous agents, a full protection Nash equilibrium exists as long as protection costs 
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are smaller than self-insurance costs (see Chapter 2). An exactly identical proof can be 

conducted in the heterogeneous case to show that a full protection equilibrium is reached 

if bi < Ci for all i. 

On the other hand, it only takes one of the players to face high security costs to make 

this equilibrium collapse. Indeed, if there exists k such that bk > ck, then Player k will 

always prefer a full self-insurance strategy ((ek, sk) = (0,1)) over a full-protection strategy 

((e/oS/c) = (1,0)). This will immediately lead other players to try to save on security 

costs by picking e{ = e > 0 as small as possible. We then observe an escalation as 

in the unmitigated version discussed above. Hence, heterogeneity actually threatens the 

(precarious) stability of the only possible Nash equilibrium. 

Result: In contrast to the weakest-target game without mitigation we find that a pure Nash 

equilibrium may exist. 

• Full protection eq.: If bi < Cj for all agents we find that the full protection equilib­

rium (Vi, (ej, s^ = (1,0)) is the only possible pure Nash equilibrium. 

• If bi > Ci for any agent we can show that no pure Nash equilibrium exists. 

• There are no pure self-insurance equilibria. 

3.4 Intervention mechanisms 

In practice system designers may not be satisfied with the outcomes predicted by non-

cooperative game theory. First, equilibria may not be achievable due the complexity of the 
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games, which limits the understanding and accurate execution of strategies by agents. Sec­

ond, planners may wish to improve upon the Nash equilibrium security practices. Below 

we discuss selected intervention strategies in the context of the security games to improve 

convergence and to achieve certain contribution targets. 

Objective 1 - Help agents to identify individually rational strategy: In the five games 

we consider, agents will incur a loss when adequate protection or self-insurance is amiss. 

However, the reasons for vulnerability to a loss and eventual compromise are different. For 

example, in the weakest-target game without mitigation, a security breach is not solely the 

result of an agent's protection level, but is dependent on the ordering of contribution levels. 

Individual rationality presumes that agents follow a sophisticated mixed strategy (see also 

Chapter 2)). However, non-automated agents will only be able to follow such a strategy 

with difficulty [195]. Even pure strategies might require several periods of convergence 

[40]. 

One possible method of intervention to overcome complexity or coordination problems 

is to offer (non-binding) advice to agents in a security game. For example, Brandts and 

MacLeod [34] show that players might choose, in a self-enforcing manner, a strategy rec­

ommended by an external arbiter. The assignment strongly influences behavior if it does 

not conflict with another focal principle. In practice, individuals care about who is giving 

the advice. For example, the suggestion by a computer security company to protect against 

security breaches with a product of the same brand might be regarded as advertisement and 

be less influential [131]. Instruments for coordination may also take the form of financial 
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incentives. For example, a third party or intermediary such as an Internet Service Provider 

(ISP) can offer a rebate or service discount to its subscribers who demonstrably invest in 

an adequate level of protection. 

System designers have also started to exploit individuals' preferences for status quo set­

tings [122]. If users rarely alter default settings, the importance of choosing secure defaults 

on the two dimensions of self-insurance and protection is immensely high. For example, 

the Windows XP firewall, when first introduced to the Microsoft Windows operating sys­

tem in 2001, was disabled by default. Subsequent to the Blaster worm attack, the default 

setting was changed to "fully enabled" with Windows Server 2003. As another example, 

OpenBSD's "secure by default" philosophy means that all non-essential services are dis­

abled by default. This promotes general network security and also encourages users to 

learn more about potential consequences of making changes to security settings. 

Objective 2 - Achieve social optimality: In the weakest-link security game, deviation of 

a single agent i from a full protection strategy can render all other agents' efforts mean­

ingless or force them to self-insure or be passive. However, this decision by agent i can 

be individually rational if 6, > c* or bi > PiLi. The traditional solution to this situation 

has been to involve a social planner who can mandate certain protection and self-insurance 

settings that optimize overall system utility. In Chapter 2, we discussed social optimum 

outcomes for the homogeneous agents scenario. 

A different approach is to allow agents to conduct binding pregame communication. For 

example, consider a scenario in which an agent can propose to another agent that she will 
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only protect if the other agent agrees to reciprocate. Such two-sided communication can 

increase the protection contribution in the total effort game since the responding agent can 

internalize the potential contribution of the proposing agent (rather than merely evaluating 

bi < piLi/N). In a different scenario, an agent may commit to a high or low protection level 

and not require reciprocation. Given this one-way pregame communication, the protection 

contributions by other agents will be unaffected in a total effort game, but impacted in the 

best shot and weakest-target games. In the best shot game, a one-way message indicating 

i 
that the sender will shirk can encourage another agent i to take action (if bi < PiLi). In the 

weakest-target game, the same message would signal to other agents that the sender will 

bear the burden of the attack. This act of altruism is particularly likely if the agent can self-

insure at low cost. Finally, binding pregame communication is largely ineffective for the 

weakest-link game. However, it can help to coordinate on the protection Nash equilibrium 

that Pareto-dominates other equilibria with a lower e. 

Objective 3 - Overcome free-riding and lack of protection in networks: Free-riding oc­

curs in our games at several points. For example, in the best shot game, agents coordinate so 

that only one agent exercises maximum protection effort in a protection Nash equilibrium. 

In the social optimum for the weakest-target games with homogeneous agents, one node 

(that may invest in self-insurance) will bear the brunt of an attack while others shirk (see 

Chapter 2). Both outcomes, while maximizing utility, might result in loss of camaraderie 

and willingness to contribute in the future. 

One strategy to probabilistically increase contributions by agents is to leverage the 
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strategic uncertainty when agents act independently. The coordination problems inher­

ent in the best shot game with heterogeneous agents and in the weakest-target games may 

lead agents to contribute to protection levels above the social optimum. In practice such an 

approach might have the merit of increasing general preparedness against different types 

of attacks. Strategic uncertainty is often a function of network size. For example, in the 

weakest-target game, agents in small groups will notice the increased interdependency and 

risk of being the weakest-target. These agents will decide to self-insure their resources 

more often ((e^s,) = (0,1)). That means with increasing network size, we would ob­

serve that more individuals contributing to protection. This result stands in contrast to the 

weakest-link game analysis. In the heterogeneous as well as in the homogeneous game, 

it becomes increasingly unlikely that contributions to protection are made. Heterogeneity 

can also moderate protection contributions in a different way. In the homogeneous best shot 

game, we do not observe individually rational protection contributions at all since agents 

cannot overcome the associated coordination problems. However, they can achieve higher 

protection levels when agents have heterogeneous tastes. 

Contributions can be increased behaviorally by modifying the framing of a security sit­

uation. Framing effects occur when two logically equivalent (but not transparently equiva­

lent) statements describing a problem drive individuals to choose dissimilar options. More 

specifically, such differences in the presentation may draw a subject's attention to alterna­

tive aspects of a decision situation, leading an individual to make mistakes in pursuing her 

underlying preferences [176]. For example, homogeneous agents can be tempted to con-
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tribute in a best shot game if they receive feedback that highlights the uniqueness of their 

contributions [124]. Similarly, increased protection investments may arise if agents per­

ceive a security situation as more threatening. However, underinvestment can result from 

resignation with respect to the complexity of the security problem. 

3.5 Summary 

In Chapter 2 we have studied homogeneous populations of users, where all participants 

have the same utility function. In practice, the homogeneity assumption is reasonable in 

a number of important cases, particularly when dealing with very large systems where a 

large majority of the population have the same aspirations. For instance, most Internet 

home users are expected to have vastly similar expectations and identical technological re­

sources at their disposal; likewise, modern distributed systems, e.g., peer-to-peer or sensor 

networks generally treat their larger user base as equals. 

However, the fact that the Internet is increasingly used as a common vector between 

different businesses, and even as a bridge between completely different user bases - for 

instance, acting as a bridge between mobile phone networks, home users, and e-commerce 

retailers - emphasizes the need for considering heterogeneous agents, even though the 

analysis may become far less tractable. 

We find several key differences to the analysis with homogeneous agents. For example, 

we find that in the total effort game stability increases with more pronounced heterogeneity 
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in the agent population. The existence of a protection equilibrium in the weakest-link 

game is threatened if only one agent prefers to self-insure or to remain passive. In the 

best shot game heterogeneous agents can overcome coordination problems more easily, so 

that a protection equilibrium is now possible, even though reaching this equilibrium grows 

increasingly unlikely with a larger number of agents participating in the network. 

Surprisingly, predictions for pure Nash equilibria of the weakest-target games remain 

unchanged. However, mixed strategies do now have to take consideration of the hetero­

geneity of agents. 

We discuss several intervention strategies in the context of security games. We note 

that in each game the challenge to increase security contributions to achieve a particular 

objective requires a largely different approach. This versatility is confirmed by practical 

observations which tell us that a "one size fits all strategy" for computer security does not 

exist. 
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Chapter 4 

Bounded rationality and limited 

information 

Users frequently fail to deploy, or upgrade security technologies, or to carefully pre­

serve and backup their valuable data [121,162], which leads to considerable monetary 

losses to both individuals and corporations every year. This state of affairs can be partly 

attributed to economic considerations. End users may undertake a cost-benefit analysis and 

decide for or against certain security actions [86,192]. However, this risk management 

explanation overemphasizes the rationality of the involved consumers [115]. In practice, 

consumers face the task to "prevent security breaches within systems that sometimes ex­

ceed their level of understanding" [21]. In other words, the amount of information users 

may be able to acquire and/or to process, is much more limited than is required for a fully 

rational choice. 
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We focus on decision-making in different security scenarios that pose significant chal­

lenges for average users to determine optimal security strategies, due to interdependencies 

between users (see Chapter 2). Interdependencies occur when the actions of a given user 

have an effect on the rest of the network, in part or as a whole (externalities), or when the 

status of a given user impacts that of other users. For example, consumers who open and 

respond to unsolicited advertisements increase the load of spam for all participants in the 

network. Similarly, choosing a weak password for a corporate VPN system can facilitate 

the compromise of many user accounts. 

We anticipate the vast majority of users to be non-expert, and to apply approximate 

decision-rules that fail to accurately appreciate the impact of their decisions on others [3]. 

In particular, in this chapter, we assume non-expert users to conduct a simple self-centered 

cost-benefit analysis, and to neglect interdependencies. Such users would secure their sys­

tem only if the vulnerabilities being exploited can cause significant harm or a direct annoy­

ance to them (e.g., their machines become completely unusable), but would not act when 

they cannot perceive or understand the effects of their insecure behavior (e.g., when their 

machine is used as a relay to send moderate amounts of spam to third parties). 

In contrast, an advanced, or expert user fully comprehends to which extent her and 

others' security choices affect the network as a whole, and responds rationally. The first 

contribution of this chapter is to study the strategic optimization behavior of such an ex­

pert user in an economy of inexperienced users, using three canonical security games that 

account for network effects (see Chapter 2). 
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Our approach to capture bounded-rational behaviors of end-users differs significantly 

from research on computability and approximation of economic equilibria [91]. We argue 

that models of security decision-making can benefit from a critical inquiry of the conceptual 

understanding users have of security problems. While experts and unsophisticated users co­

exist in the same networks, they do not share the same knowledge or mental models about 

security problems and countermeasures [3, 14,21,115, 196,215], or the same identical 

perfectly rational approaches to solve security issues [2,47]. 

The second contribution of this chapter is to address how the security choices by users 

are mediated by the information available on the severity of the threats the network faces. 

We assume that each individual faces a randomly drawn expected loss. Indeed in practice, 

different targets, even if they are part of a same network, are not all equally attractive to 

an attacker: a computer containing payroll information is, for instance, considerably more 

valuable than an old "boat anchor" sitting under an intern's desk. We study how the de­

cisions of the expert and unsophisticated users differ if all draws are common knowledge, 

compared to a scenario where this information is only privately known. With this approach 

we provide two important baseline cases. We further evaluate the value of better informa­

tion on the total expected payoff of the expert agent. Specifically, we study the following 

metric: the payoff under complete information divided by the payoff under the incomplete 

information condition. 

By evaluating the value of information for a range of parameters in different secu­

rity scenarios, we can determine which configurations can accommodate limited infor-
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mation environments (i.e., when being less informed does not significantly jeopardize an 

expert user's payoff), as opposed to configurations where expert users and non-expert users 

achieve similar outcomes due to a lack of available information. This analysis has impli­

cations for network designers that want to avoid undesirable hotspots that penalize users 

for their lack of information about threats. Similarly, Internet Service Providers or other 

intermediaries may take influence on the pricing and availability of security technologies 

to steer users to less harmful parameter configurations. 

We first discuss selected work related to our analytic model (Section 4.1). In Sec­

tion 4.2, we summarize the security games framework we developed in prior work, and 

detail our assumptions about agent behaviors and information conditions. We present our 

methodology and formal analysis in Section 4.3. We discuss the results and their implica­

tions in Section 4.4. Finally, we close with concluding remarks in Section 4.5. 

4.1 Background 

In this chapter we conduct a decision-theoretic analysis for a sophisticated (expert) 

agent who interacts with a group of users that follow a simple but reasonable rule-of-thumb 

strategy. We structure the remainder of the review of related literature and background 

information into three selected areas in which we are making a research contribution. 

The analysis in this chapter significantly differs from prior decision-theoretic approaches. 

Gordon and Loeb present a model that highlights the trade-off between perfect and cost-
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effective security [87]. They consider the protection of an information set that has an asso­

ciated loss if compromised, probability of attack, and probability that attack is successful. 

They show that an optimizing firm will not always defend highly vulnerable data, and only 

invest a fraction of the expected loss. Cavusoglu et al. [42] consider the decision-making 

problem of a firm when attack probabilities are externally given compared to a scenario 

when the attacker is explicitly modeled as a strategic player in a game-theoretic frame­

work. Their model shows that if the firm assumes that the attacker strategically responds 

then in most considered cases its profit will increase. Schechter and Smith [189] consider 

the decision-theoretic analysis from the perspective of the potential intruder. They highlight 

several modeling alternatives for attacker behavior and their payoff consequences. The an­

alytic work on security investments and level of penalties for offenses is complemented by 

empirical research [171,205]. 

4.1.1 Bounded rationality 

Acquisti and Grossklags summarize work in the area of behavioral economics and psy­

chology that is of relevance for privacy and security decision-making [3]. Users' decisions 

are not only limited by cognitive and computational restrictions (i.e., bounded rationality), 

but are also influenced by systematic psychological deviations from rationality. 

Recent research has investigated agents that overemphasize earlier costs and benefits 

at the expense of their future well-being [2,4,165]. Christin et al. (building on prior 

economic research [5,177]) suggest that agents respond near-rationally to the complexity 
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of networked systems [47]. In their model individuals are satisfied with a payoff within a 

small margin of the optimal outcome. 

Different from the above work that considers all players to act the same, this chap­

ter studies a mixed economy, with expert and non-expert users co-existing. While expert 

users are as rational as possible, non-expert users deviate from rationality by adopting ap­

proximate (rules-of-thumb) decision strategies. In practice, users frequently have to rely 

on rules-of-thumb when a "quantitative method to measure security levels" is not avail­

able [150]. Economic analysis including rule-of-thumb choices have been discussed out­

side of the security context, e.g., [63] [72] [140]. 

4.1.2 Limited information 

In the context of the value of security information, research has been mostly concerned 

with incentives for sharing and disclosure. Several models investigate under which condi­

tions organizations are willing to contribute to an information pool about security breaches 

and investments when competitive effects may result from this cooperation [76,88]. Em­

pirical papers explore the impact of mandated disclosures [41] or publication of software 

vulnerabilities [209] on the financial market value of corporations. Other contributions to 

the security field include computation of Bayesian Nash outcomes for an intrusion detec­

tion game [143], and security patrol versus robber avoidance scenarios [168]. 

We conduct a comparative analysis of strategies and payoffs for a sophisticated agent 

in a security model when the expected loss from a directed attack is either common or 
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private knowledge. In particular, we evaluate the influence of the lack of information given 

different organizational dependencies [212]. 

4.1.3 Heterogeneous agents 

In earlier chapters we analyze both the case of homogeneous (Chapter 2) and hetero­

geneous agents (Chapter 3). When considering heterogeneous agents, however, we have 

focused on differences in the costs agents may face. We assumed that users differ in the 

price they have to pay for protection and self-insurance, and that they have different per­

ceived or actual losses associated with successful (uninsured) security compromises. In the 

present chapter we analyze the case of agents facing different attack probabilities, that may 

be a priori unknown to other agents. 

Given certain differences in the attractiveness of a particular target the question remains 

how a defender is able to determine a reasonable estimate of the expected loss. Such a 

problem far exceeds the scope of this chapter, whose main goal is to study the impact of 

information (or lack thereof) on security strategies, and we refer the reader to the threat 

modeling literature. (See [9] for an introduction and references.) 

4.2 Decision-theoretic model 

In the following we highlight the model variations for the current analysis. In particular, 

we extend our model to the case of an economy consisting of an expert user and several 
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4.2.1 Modifications to the basic model 

Player i decides whether to invest in protection (e; = 1) or not (ê  = 0). Similarly, each 

player can adopt a self-insurance technology (s; = 1) or not (SJ = 0). In other words, ê  

and Si are two discrete decision variables. 

Discrete choice decision-making captures many practical security problems. Examples 

include purchase and adoption investments as well as updating and patching of protection 

and self-insurance technologies [16,132,154,160]. 

We have further conducted a sensitivity analysis with respect to the discrete choice 

assumption and find that, for the study in this chapter, the only differences between the dis­

crete and continuous cases (where e; and Sj are continuous variables over the interval (0,1) 

as opposed to be mere binary variables) arise when there is strict equality between some 

of the terms in our case-specifying inequality conditions (see derivations in Section 4.3). 

We believe that focusing on these boundary cases is of limited practical applicability, and 

could even be misleading. For comparison, we refer to the analysis in Chapter 2 where we 

considered the continuous case in a full information environment. 

Expected losses: If an agent is attacked and compromised successfully she faces a maxi­

mum loss of L. Her expected loss, PiL, is mitigated by a scaling factor Pi randomly drawn 

from a uniform distribution on [0, l].1 In prior chapters, we interpreted the parameter pi as 

technically, our analysis does not require complete knowledge of the distribution on the various p^ The 
distribution informs the probability that a given number of pj are above the rule-of-thumb threshold; but to 
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the probability of a successful attack; however in the present work we prefer to consider 

the expected loss, p.iL, as the primary heterogeneous parameter under consideration. The 

same familiar notation with p; considered as a random mitigating factor as opposed to an 

attack probability facilitates this perspective. 

This models the heterogeneous preferences that attackers have for different targets, due 

to their economic, political, or reputational agenda. The choice of a uniform distribution 

ensures the analysis remains tractable, while already providing numerous insights. We 

conjecture that different distributions (e.g., power law) may also be appropriate in practice. 

4.2.2 Player behavior 

At the core of our analysis is the observation that expert and non-expert users differ in 

their understanding of the complexity of networked systems. Indeed, consumers' knowl­

edge about risks and means of protection with respect to privacy and security can be quite 

varied [3], and field surveys separate between high and low expertise users [201]. 

Sophisticated (expert) user: Advanced users can rely on their superior technical and 

structural understanding of computer security threats and defense mechanisms, to analyze 

and respond to changes in the environment [56]. In the present context, expert users, for 

example, have less difficulty to conclude that the goal to avoid censorship points at a best 

shot scenario, whereas the protection of a corporate network frequently suggests a weakest-

link situation (see our discussion in Chapter 2). Accordingly, a sophisticated user correctly 

conduct our analysis, it suffices to know only these threshold probabilities, and not the full distribution. 
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understands her utility to be dependent on the interdependencies that exist in the network: 

Ui = M - PiL(l - s;)(l - H(ei, e_j)) - fee, - csi . 

Naive (non-expert) user: Average users underappreciate the interdependency of network 

security goals and threats [3] [201]. We model the perceived utility of each naive agent to 

only depend on the direct security threat and the individual investment in self-protection 

and self-insurance. The investment levels of other players are not considered in the naive 

user's decision making, despite the existence of interdependencies. We define the perceived 

utility for a specific naive agent j as: 

PUj — M — PjL(l — Sj)(l — ej) — bej — CSJ . 

Clearly, perceived and realized utility actually differ: by failing to incorporate the in­

terdependencies of all agents' investment levels in their analysis, naive users may achieve 

sub-optimal payoffs that actually are far below their own expectations. This chapter does 

not aim to resolve this conflict, and, in fact, there is little evidence that users will learn 

the complexity of network security over time or are able to keep up with the challenges of 

novel threats [201]. We argue that non-expert users would repeatedly act in an inconsistent 

fashion. This hypothesis is supported by findings in behavioral economics that consumers 

repeatedly deviate from rationality, however, in the same predictable ways [122]. 
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4.2.3 Information conditions 

Our analysis is focused on the decision making of the expert user subject to the bounded 

rational behaviors of the naive network participants. That is, more precisely, the ex­

pert agent maximizes her expected utility subject to the available information about other 

agents' drawn threat probabilities and their resulting actions. Two different information 

conditions may be available to the expert agent: 

Complete information: Actual draws of attack probabilities pj for all j ^ i, and her own 

drawn probability of being attacked pi. 

Incomplete information: Known probability distribution of the naive users' attack threat, 

and her own drawn probability of being attacked p^. 

The expert agent can accurately infer what each agent's investment levels are in the 

complete information scenario. Under incomplete information the sophisticated user has 

to develop an expectation about the actions of the naive users. 

4.3 Analysis methodology 

In the remainder of this discussion, we will always use the index i to denote the expert 

player, and j• ^ i to denote the naive players. For each of the three games, weakest-link, 

best shot, and total effort, our analysis proceeds via the following five-step procedure. 

1. Determine player i's payoff within the game for selected strategies of passivity, full 

insurance, and full protection. As shown in Chapters 2 and 3 through a relatively 
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simple analysis, player i can maximize her utility only by relying on (one or more 

of) these three strategies. 

2. Determine the conditions on the game's parameters (b, c, L, N, p^ and if applicable, 

Pj for j 7̂  i) under which player i should select each strategy. 

3. Determine additional conditions on the game's parameters such that the probability 

(relative toj9j) of each case, as well as the expected value of p, within each case can 

be easily computed. 

4. Determine player i's total expected payoff relative to the distribution on pi and all 

other known parameters. 

5. In the case of complete information, eliminate dependence on pj for j ^ i by taking, 

within each parameter case, an appropriate expected value. 

Diligent application of this method generates a table recording the total expected pay­

offs for player i, given any valid assignment to the parameters b, c, L, N. In the process it 

also generates tables of selection conditions, probabilities, and expected payoffs for each 

possible strategy; and in the complete information case, gives results for total expected 

payoffs conditioned on the exact draws of pj by the other players. The results are presented 

in Tables A. 1-A. 15. 

In the remainder of this section we illustrate this method by considering, for each step 

listed above, one game and one parameter case for which we have applied the appropriate 

step. 
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Step 1 example: Passivity payoff computation. Let us consider the challenge of deter­

mining payoffs for player i's passivity in the best shot game, under the conditions of limited 

information and parameter constraints b < c. The general payoff function for the best shot 

game is obtained by substituting H(e,, e_i) = max(e,, e_i) into the general utility function 

for all games, i.e. U(i) = M — PiL{\ — Sj)(l — if(e,, e_;)) — 6e, — csi. Doing this, we 

obtain U(i) = M — PiL(l — Sj)(l — max(ej, e_j) — 6e, — CSJ. To get the payoff for player 

z's passivity we plug in ê  = S; = 0 to obtain 

Ui={ 
M — PiL, if maxj^i Cj = 0 

M, if max.j& ej = 1 

Now in the incomplete information case, we do not know any of the pj for j ^ i, so 

we do not know all the parameters to compute the required payoff. However, since we 

assume that the pj are independently and uniformly distributed in [0,1], we can compute 

an expected value for this payoff as follows. The probability (over pj) that none of the 

other players protect (i.e. that max.^ pj < b/L) is exactly (b/L)1^'1, and in this case 

the payoff would be M — p^L. The probability (over pi) that at least one of the other 

players protect (i.e. that b/L < maxj^pj) is exactly 1 — (6/L)iV~1, and in this case the 

payoff would be M. Thus the total expected payoff for selecting the passivity strategy is 

(b/L)N-\M - PiL) + (1 - (b/L^-^M, which simplifies to M - PiL{b/L)N~l. We 

record this as the payoff result for passivity in the incomplete game, with b < c, as can be 

seen in Table A.6. 
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Step 2 example: Strategy selection. Let us next consider the challenge of determining 

parameter conditions under which we should select player i's strategy in the weakest-link 

game. Since this is a second step, consider the game payoffs in Table A. 1 as given. We 

are interested in determining player i's most strategic play for any given parameter case. 

Select for consideration the case b < c with incomplete information. (Note: this is the most 

difficult case for this game). 

To determine the optimal strategy for player i, we must select the maximum of the 

quantities Passivity: M — PiL, Insurance: M — c, and Protection: M — b — piL(l — 

(1 — b/L)1^^1). We should choose passivity if it is better than insurance or protection, 

i.e. M -PiL > M -candM -PiL > M - b - PiL(l - (1 - b/L)"-1). We should 

choose insurance if it is better than passivity or protection, i.e. M — c > M — PiL and 

M — c > M — b — PiL(l — (1 — b/L)*'1). We should choose protection if it is better than 

passivity or insurance, i.e. M — b - PiL(l - (1 — 6/L)iV~1) > M — PiL and M — b — 

Pi.L(l - (1 - b/L)"-1) >M-c. 

Re-writing the above inequalities as linear constraints on Pi, we choose passivity if Pi < 

c/L and p{ < £,(1_(1_fc/I))N-i); we choose insurance if Pi > c/L and Pi > L{l_{1
c_~b

b
/L)N-iy 

and we choose protection if L(1_(1^/
fc

L)W_1) <Pi< X,(I-(I-6/L)N-I)-

For simplicity of computation, we would like to have our decision mechanism involve 

only a single inequality constraint on Pi. To obtain this it is necessary and sufficient to 

determine the ordering of the three terms: f, j-(1_(1_^/L)Ar_1), and Ln_n'lb
b/L)N-iy 
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It turns out that there are only two possible orderings for these three terms. The single 

b inequality c < {1_b/
b

L)N^ determines the ordering: f < L{1_{1
c_h

b/L)^) < L(i-(i-b/u»-i)> 

while the reverse inequality (l_b/
b
L\N-i < c determines the reverse ordering on all three 

terms. This observation suggests we should add sub-cases under b < c depending on 

which of these two inequalities holds. See Table A.2. 

Within each new sub-case the criterion for selecting the strategy that gives the highest 

payoff can now be represented by a single linear inequality on p^. If c < (l-b/L)1^-1, 

then passivity wins so long as Pi < c/L; (because the new case conditions also guarantee 

Pi < . L y - i ) . Similarly insurance wins if Pi > c/L. Protection never wins in this 

case because we cannot have —,—, c~b. ,»_» < Pi < —?—;—b ,N-i\ when we also have 
Lll-ll-b/L) L l - ( l - o / L ) 

b ^ c-b 
(i-6/i)Arrr < Lii-ii-b/L)1*-1)' T h e c o n l P u t a t i o n s f o r t n e c a s e (i-b/l)^-1 < c a r e similar; 

the results are recorded in Table A.2. 

Step 3 example: Case determination. Now, consider the challenge of determining ad­

ditional constraints on parameters in the total effort game, so that in any given case, the 

total payoffs can be represented by simple closed form functions of the game's parameters. 

Since this is a third step, we assume the second step has been diligently carried out and 

consider the strategy conditions given in Table A. 12 as given. For brevity, we consider 

only the incomplete information case under the assumption b < c. 

To illustrate the problem we are about to face, consider the condition for selecting pas­

sivity in the incomplete game and case: b + b2(N — 1)/L < c. The condition here is that 

Pi < bN/L. This condition is possible if and only if bN < L. The case conditions deter-
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mined thus far do not specify which of these is the case; so for subsequent computations, 

we will need to know which it is, and therefore must consider the two cases separately. 

Going beyond this particular example, there are several other values in this table where a 

similar phenomenon occurs. In particular, we need new cases to determine whether each of 

the following relations holds: bN/L < 1, b+{L
c_b)/N < 1, and -^^ < 1. (See Table A. 12). 

To combine these with previous cases in a way that avoids redundancy, we rewrite the 

conditions involving c as linear inequalities on c; obtaining c < 6 + (L — b)/N and c < 

26 - b/N. 

We are thus left to reconcile these additional cases with the current cases b < c < 

b + j;(N — 1) and b + -̂(./V — 1) < c. To do this efficiently we must know the order of 

the terms b + ^ , 2b— jj, and b + j^(N — 1). Fortunately, it turns out that there are only 

two possible orderings on these terms; and furthermore, which of the two orderings it is 

depends on the relation bN < L which we already needed to specify as part of our case 

distinctions. If 67V < L, then b + £(N - 1) < 26 - £ < b + ^ and if bL > N, then the 

reverse relations hold. 

Assuming limited information, 6 < c, and dividing all cases according to 6iV < L, it 

requires a total of 5 cases to determine all important relationships among important param­

eters for this game. We may have 6/V < L and b < c < b + j^(N — 1); 6iV < L and 

6 + § (TV - 1) < c < 26 - £ ; bN < L and26 - £ < c; bN > L and c < 6 + ^ ; and 

bN > L and 6 + ^ < c. For reference, see table A. 15. 
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Step 4 example: Total payoff computation. Let us determine the total expected payoff 

for the expert player with incomplete information in the best shot game with b < c. As 

intermediate steps we must compute the probability that each strategy is played, along with 

the expected payoff for each strategy. The total payoff is then given by (Probability of 

passivity • Expected payoff for passivity) + (Probability of insurance • Expected payoff for 

insurance) + (Probability of protection • Expected payoff for protection). 

The expected probability of passivity in this case is 1, with a payoff of M—piL(b/L)N~l. 

To get an expected payoff, we compute the expected value of p{ within this case. Since there 

is no constraint on p^ and it is drawn from a uniform distribution its expected value is 1/2. 

Thus the expected payoff for this case is M — (L/2)(b/L)N~1. The total expected payoff 

is thus M - (L/2){b/L)N-\ 

Step 5 example: Eliminating dependencies on other players. Consider the challenge 

of examining the total expected payoff for player i, who has complete information, and 

rewriting this payoff in a way that is still meaningful as an expected payoff, but does not 

depend on any pj for j ^ i. The reason we want to do this last step is so we can com­

pare complete information payoff results with incomplete information payoff results. We 

can only do this if the direct dependence on privileged information is removed from the 

complete information case payoff. Our method of information removal involves taking an 

appropriate expected value. 

For this example we consider the best shot game with complete information in the case 

b < c. Since this is a fifth step, we should assume that the fourth step - computing the 
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expected payoff for player i as a function of parameters that may include pj for j ^ i- has 

been accomplished. 

Indeed, by following steps 1-4, the total expected payoffs for player i (conditioned on 

other players) in the case b < c can be derived, subject to two additional sub-cases. If 

maxj^iPj < b/L, then the expected payoff is M — c + c2/L; while if b/L < maxj^pj, 

then the expected payoff is M — b + b2/L. 

To generate an appropriate "a posteriori" expected payoff over all choices of pj, we 

compute the probability (over choice of pj) that we are in case m a x ^ pj < b/L times the 

payoff for that case, plus the probability (over pj) that we are in the case b/L < m a x ^ pj 

times the payoff for that case. We obtain (b/L)1*'1 • [M - c + c2/L] + 

[M-b + b2/L}. The end result is M - b (1 - b/2L) (b/L)N~\ See Table A.10. 

4.4 Results 

4.4.1 Strategies and payoffs 

Our results provide us with insights into security decision-making in networked sys­

tems. We can recognize several situations that immediately relate to practical risk choices. 

We start with basic observations that are relevant for all three games, before discussing the 

different games and information conditions in more detail. 

General observations applicable to all three security games. Every scenario involves 

simple cost-benefit analyses for both sophisticated and naive agents [86]. Agents remain 

1 - (b/L) 
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passive when the cost of self-protection and self-insurance exceeds the expected loss. Fur­

ther, they differentiate between the two types of security actions based on their relative cost. 

This behavior describes what we would usually consider as basic risk-taking that is part of 

everyday life: It is not always worth protecting against known risks. 

One important feature of our model is the availability of self-insurance. If c < b the de­

cision scenario significantly simplifies for all games and both information conditions. This 

is because once self-insurance is applied, the risk and interdependency among the players 

is removed. The interesting cases for all three games arise when b < c and protection is a 

potentially cost-effective option. In this case self-insurance has a more subtle effect on the 

payoffs. 

There are important differences between the two agent types. The expert agent consid­

ers the strategic interdependencies of all agents' choices. For example, consider b < piL 

and b < c (that is, protection would be the preferred choice in the absence of interdepen­

dencies) then the expert agent sometimes rather prefers to self-insure, or to remain passive 

while naive agents would always protect without further consideration. The more nuanced 

strategies of the expert agent attest to her realization that the group protection goal is some­

times not achievable. Note that we model the agents' incentives to invest in protection in 

canonical scenarios when security is critically dependent on a group effort (see descrip­

tions for tightly coupled games in Chapter 2). For example, with full cooperation of all 

agents the incentives to send unsolicited bulk email could be significantly reduced. How­

ever, if naive users open, respond or otherwise interact with spam then other users have 
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little choice but some form of mitigation of the resulting inconveniences. Otherwise, the 

expert agent will commonly invest in security for a resource when its safety is not subject 

to peers' (in)actions (i.e., if N = 1). 

If b > PjL for some agents j , then the naive users do not fully internalize how the 

inactions of those agents can impact system-wide security. This naivete is coming back to 

haunt them. In fact, surveys of average end users' security experiences show that 66 percent 

lost data permanently due to lacking backup provisions [121]. Similarly, 54 percent have 

had their computers infected by a network-propagated malicious code [162]. For example, 

the success of the Conflickr/Downadup worm is dependent on users not applying available 

patches to their operating system [199]. 

The naive agents face a payoff reduction as a result of their limited understanding of 

correlated threats, but even the sophisticated agent can experience a similar payoff reduc­

tion due to limited information. On the one hand, she might invest in self-protection or 

self-insurance when it is not necessary because the naive agents collectively or individu­

ally secured the network. On the other hand, she may fail to take a security action when a 

(relatively unexpected low probability) breach actually occurs. It is important to mention 

that she acted rationally in both situations, but these additional risks remain. 

Basic payoffs for different security actions: We can immediately observe that the addi­

tional risk due to limited information results from different mechanisms for each security 

scenario. In the weakest-link game (Table A. 1) we find that self-protection carries a risk for 

the expert agent with limited information that at least one naive agent chooses not to pro-
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tect. This would result in a break-down of system security and a waste of self-protection 

expenditure. In contrast, in the best shot game (Table A.6) the investment in preventive 

action always secures the network but with limited information this may be a duplicative 

effort. In the total effort game these risks are more balanced (Table A.l 1). The expert can 

add or withhold her N-th part of the total feasible security contribution. Depending on the 

cost of security she has to estimate the expected number of naive contributors K in order 

to respond adequately. 

Conditions for choice between different security actions: In the weakest-link game and 

complete information, the expert agent can utilize the lowest attack probability that any 

naive agent has drawn. If this value is below the required threshold for protection, (i.e. if 

min,yj Pj < b/L), then the sophisticated agent will never protect. Otherwise, depending on 

her own draw she will make or break a successful defense. Under incomplete information 

she has to consider the likelihood (1 — b/L)1*'1 that all naive agents protect. In all cases 

there is now a residual likelihood that she might self-insure. See Table A.2. 

In the best shot game the fully informed expert can simply determine the highest like­

lihood of being attacked for any naive agent to decide whether she should contribute to 

system protection. With full or limited information, it is obvious that she will only have 

to contribute very rarely, and can mostly rely on others' efforts. Nevertheless, it is surpris­

ing to find that in the incomplete information scenario the expected payoff from passivity 

always dominates the expected payoff for protection, even when the expected loss is near 

total {pi ~ 1). The sophisticated user with limited information will never protect. Under 
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neither information condition is it optimal to self-insure if b < c. See Table A.7 for details. 

Next consider the total effort game (Table A. 12). Under full information with b < c, 

all conditions depend non-trivially on K, the number of contributors to protection. Under 

incomplete information the expert must compute the expected value of K, which is (1 — 

b/L)(N — 1). The case differences between complete and incomplete conditions reflect the 

replacement of K with E[K], and subsequent simplification. In all cases, the critical factor 

for the decision to protect is whether the potential loss is N times greater than the cost of 

protection (i.e. piL > bN). 

Case boundaries for choice between different security actions: In Figure 4.1, we plot 

the cases used to record total expected payoffs for the expert agent in Tables A.5, A. 10, 

and A. 15. The associated results for the probabilities of self-protection, self-insurance and 

passivity (within each case) are Tables A.3, A.8, and A.13. 

In the weakest-link game only cases 3 and 4 allow for investments in self-protection. 

We find that increasing the number of agents, N, results in a shrinkage of both cases 3 and 

4 to the benefit of case 2. In contrast, the determination of case boundaries in the best shot 

game is independent of the size of the network. Finally, in the total effort game only cases 

3 and 4 allow for rational self-protection investments. Again an increase in the network 

size reduces the prevalence of these cases (since bN < L is a necessary condition). 

Payoffs: Tables A.5, A. 10, and A. 15 contain the total expected payoff for decisions made 

by the sophisticated agent, but also for the naive agents. 

We have already highlighted that for c < b all agents follow the same simple decision 
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Figure 4.1: Strategy boundaries in the incomplete information scenario for the sophis­
ticated player. The different cases refer to Tables A.5, A. 10 and A. 15. L = M = 1 and 
TV = 4 in this set of examples. 
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rule to decide between passivity and self-insurance. Therefore, payoffs in this region are 

identical for all agent types in the case of homogeneous security costs. But, there are payoff 

differences among all three information conditions for some parts of the parameter range 

when b < c. 

Consider the graphs in Figure 4.2. We plot the payoff functions for sophisticated agents 

types under the different information conditions, as well as the payoff output for the non­

expert agent. It is intuitive that the naive agents suffer in the weakest-link game since they 

do not appreciate the difficulty to achieve system-wide protection. Similarly, in the best 

shot game too many unsophisticated agents will invest in protection lowering the average 

payoff. In the total effort game, sophisticated agents realize that their contribution is only 

valued in relation to the network size. In comparison, naive agents invest more often in 

protection. This reflects the fact that the naive agent ignores the self-insurance option 

whenever protection is cheaper. 

We can observe that the sophisticated agents will suffer from their misallocation of 

resources in the weakest-link game when information is incomplete. In the best shot game 

this impact is limited, but there is a residual risk that no naive agent willingly protects due 

to an unlikely set of draws. In such cases the fully informed expert could have chosen to 

take it upon herself to secure the network. In the total effort game we observe a limited 

payoff discrepancy for expert users as a result of limited information. 
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4.4.2 Value of information 

From a system design perspective it is important to select parameter settings (e.g., mak­

ing available specific security technologies) that maximize user utility and are robust to 

changes in the environment. The security games we analyze in this chapter are a significant 

challenge in both aspects. In particular, from Figure 4.2 we can infer that the penalty for 

the lack of complete information about attack threats can be highly variable depending on 

the system parameters. We argue that the reduction of this disparity should be an important 

design goal. To further this goal we propose a mathematical formulation to measure the 

value of better information. We then apply this metric to the analysis of the three canonical 

security games. 

Definition: We are interested in a mathematical measure that allows us to quantify the 

payoff loss due to incomplete information for sophisticated agents, that can be applied to 

a variety of decision-theoretic scenarios. It is nontrivial to arrive at a definitive answer for 

this problem statement, therefore, we consider our analysis as a first step towards this goal. 

We define the value of information metric as the ratio: 

Expected payoff in the complete information environment 
Expected payoff in the incomplete information environment 

Observations: Consider Figure 4.3 which gives, for all three security games, a heat 

plot for the value of better information over all choices of b and c with L, M, N fixed 

at L = M = 1 and N = 4. The most remarkable feature of these graphs are the differ­

ent hotspot regions. In the weakest-link game we find that higher ratios are to be found 
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within the boundaries of cases 3 and 4. Both cases allow for self-protection in the presence 

of incomplete information and therefore balance the various risks more directly than the 

remaining cases. (Case 1 and 2 associate zero probability with self-protection.) 

In the best shot scenario the peak region is located trivially within the boundaries of 

case 2. We know that the expert player will never protect under incomplete information but 

is subject to the residual risk of a system-wide security failure. For N = 4 the likelihood 

of such a breakdown is already very small, and decreases with N. Still this outcome is 

feasible and most pronounced for protection costs that are about a half to two-thirds of the 

loss, L. For higher b the disincentive of buying self-protection and the potential loss are 

relatively balanced resulting in a lower penalty for limited information. 

In the total effort game we observe multiple hotspot regions. Cases 4 and 6 are unaf­

fected by limited information. They are characterized by the absence of self-insurance as 

a feasible strategy. This eases the decision-making problem of the expert, and reduces the 

likelihood of a misspent security investment. 

4.5 Summary 

In our work we emphasize that security decision-making is shaped by the structure of 

the task environment as well as the knowledge and computational capabilities of the agents. 

To that effect, we study security investment choices in three canonical scenarios. Decisions 

are made from three distinct security actions (self-protection, self-insurance or passivity) 
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to confront the security risks of weakest-link, best shot and total effort interdependencies. 

In these environments, we investigate the co-habitation of a single fully rational expert and 

N — 1 naive agents. The naive agents fail to account for the decisions of other agents, 

and instead follow a simple but reasonable self-centered rule-of-thumb. We further study 

the impact of limited information on rational agents' choices. To guide the reader through 

our analysis, we provide a detailed overview and examples of our methodology to compare 

strategies and payoffs. 

We find that in general, the naive agents match the payoff of the expert when self-

insurance is cheap, but not otherwise. Even with limited information, the sophisticated 

agent can generally translate her better structural understanding into decisions that mini­

mize wasted protection investments, or an earlier retreat to the self-insurance strategy when 

system-wide security is (likely) failing. 

A notable exception is the weakest-link game with incomplete information, where the 

payoff of the sophisticated agent degrades to that of the naive agent as self-insurance be­

comes more expensive. A practical implication of this result is that, in corporate network 

access control, having a lot of information about the various potential vulnerabilities that 

may exist at network access points actually only marginally enhances security; the key fac­

tor is whether self-insurance (e.g., data backups) provide adequate security or not. When 

some items, such as trade secrets, cannot be self-insured, they simply should not be stored 

on a publicly accessible network. Common sense tells us that much; a contribution of this 

chapter is to provide a mathematical foundation to justify such policy recommendations. 
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Our analysis also shows that an expert user never provides a positive improvement 

to system-wide security (in comparison to her replacement by an unsophisticated agent). 

While our expert agent is rational, she is not benevolent.2 Instead she acts selfishly, and 

the set of scenarios for which protection is her best option is always a subset of the set 

of scenarios for which the naive agent chooses protection. In other words, assuming that 

competent CISOs may be interested in enhancing security at all costs may be a tall order; 

they may, in fact, be much more interested in finding optimal security investments, which 

may not result in improved security. 

To complement our study we are interested in studying properties of a network with 

varying fractions of expert to naive users. Further, we want to address the desire of some 

computer experts to sacrifice individual resources to improve system resilience to attacks, 

by introducing benevolent agents. As discussed above, our analysis thus far evidences the 

need for such benevolent agents. As a practical example, censorship-resilient networks are 

run by volunteers; without these benevolent participants, the whole network collapses. This 

chapter shows that there is little hope for strong security if all participants are either naive, 

or selfish. 

To analyze the impact of the different information conditions we have proposed a new 

mathematical formalization. We measure the value of complete information as the ratio of 

the payoff in the complete information environment to the payoff in the incomplete infor­

mation environment. Our analysis of Figure 4.3 is a first step in that direction, however, a 

2There is a related debate on vigilante defenders in the computer science literature [20,54,117]. 
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more formal analysis is deferred to Chapter 5. 

Finally, a system designer is not only interested in the payoffs of the network partici­

pants given different information realities (e.g., due to frequent changes in attack trends). 

He is also concerned with how well-fortified the organization is against attacks. To that ef­

fect we plan to include a more thorough presentation of the parameter conditions that cause 

attacks to fail due to system-wide protection, and when they succeed (due to coordination 

failures, passivity, and self-insurance). 
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Weakest link (L=M=1, b=0.20, N=4) 
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Figure 4.2: Total expected payoffs for the strategic player under different information 
conditions, compared with that of the naive agents. L = M = 1, iV = 4, and b is fixed 
to b = 0.20 in this set of examples. 
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Chapter 5 

The price of uncertainty 

The lack of information about security threats, response mechanisms, and associated 

expected losses and cost has long been recognized as important in the computer science, 

risk management and economics communities. Granick, for example, argues that weak­

nesses in our understanding of the measurability of losses serve as an impediment in sen­

tencing cybercrime offenders [92]. Swire adds that deterring fraudsters and criminals on­

line is hampered if we cannot correctly aggregate their offenses across different jurisdic­

tions [207]. 

The question arises: how much can defenders gain by investing in techniques or other 

efforts to improve information availability for decision-making? Swire's analysis fore­

shadows significant costs to create an information exchange for law enforcement that could 

support evidence gathering. Similarly, private organizations struggle with how to accumu­

late data about security risks and incidents in their respective industries. Past work has, 
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for example, considered the role of intermediaries such as Information Sharing & Analysis 

Centers to create incentives for exchanging and disclosing data between companies. Re­

searchers investigated under which conditions organizations are willing to contribute to an 

information pool about security breaches and investments when (negative) competitive ef­

fects may result from this cooperation [76,88]. In different contexts disclosure is not always 

voluntary and companies may question how much profit they squander when undesirable 

information is released. For example, other economics research explores the impact of 

mandated disclosures [41] or publication of software vulnerabilities [209] on the financial 

market value of corporations. Some work shows that the information gathering or disclo­

sure effect is not always unambiguously positive or negative, respectively. Choi et al. [46], 

for example, present another model on mandatory disclosure of security vulnerabilities. 

They present scenarios in which disclosure is and is not welfare-improving. 

This trade-off between cost and benefits of information gathering, sharing or disclosure 

reappears in many contexts. From a viewpoint of individual rationality it is decided based 

on the difference of how much the individual can learn in comparison to the advantage 

gained by attackers or competitors [206]. 

Our contribution is to propose and evaluate a set of generic metrics that are applica­

ble to different security decision-making situations to help with this trade-off calculation. 

In particular, we are interested in quantifying the payoff differential that results from the 

changes in security choices given different information available. In economic terms we 

thereby refer to the differences in payoff that results from changes in the underlying infor-
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mation structure of the scenario that makes explicit the nature of the utility of information 

to agents [135]. 

Specifically, we introduce the "price of uncertainty" metric that quantifies the maxi­

mum discrepancy in the total expected payoff between exactly two information conditions.1 

Our terminology is made per analogy with Koutsoupias and Papadimitriou's "price of anar­

chy" [129].2 We consider difference, payoff-ratio, and cost-ratio sub-metrics as canonical 

nontrivial measurements of the price of uncertainty. 

Since the possibilities for the economic formalization of information are vast we illus­

trate our approach on a specific example. In our model for security choices, we assume 

that each agent faces a randomly drawn probability of being subject to a direct attack. We 

study how the decisions and payoffs of an individual agent differ if all draws are common 

knowledge, compared to a scenario where this information is only privately known (see our 

model in Chapter 4). 

We aim to understand the importance of the price of uncertainty across different canon­

ical cases of interdependence, best shot, weakest-link and total effort (see descriptions in 

Chapter 2). Further, in Chapter 4, we distinguish between the roles of a fully rational expert 

agent and naive end users. The latter conduct a simple self-centered cost-benefit analysis, 

and neglect interdependencies. In the current chapter, we analyze the price of uncertainty 

from the perspective of the expert agent that fully comprehends the benefits of information 

1 After our initial proposal of the price of uncertainty [97], Balcan et al. published a research study in 
which they define the price of uncertainty as the degree that small fluctuations in costs impact the result of 
natural best-response and improved-response dynamics [17]. 

2In the context of security, several researchers have brought forward analyses of the price of anarchy 
[118,138,146]. 
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in the context of the interrelationship with other naive users (see Chapter 4). This allows 

us to make a general observation. The value of information for the expert agent is always 

weakly positive [135] since naive users do not strategize based on additional information. 

In this model, the price of uncertainty can depend on several different parameters: the 

cost of security measures, the magnitude of potential losses, the initial security budget or 

endowment, and the number of other naive agents. We study the impact of these parameters 

algebraically, numerically and graphically. 

We show that a simple difference metric of the price of uncertainty increases linearly in 

losses, L, and decreases superlinearly in the number of agents, N. That is, only in the pres­

ence of extremely large losses would a decision-maker strictly prefer to explore the threat 

probabilities of other agents at a reasonable cost. We additionally present a ratio metric that 

is strictly decreasing in N. Interestingly, we demonstrate that this metric is independent of 

the magnitude of potential losses, L. Finally, our third purely cost-based metric suggests 

that it might lead to misleading conclusions about the necessity of information gathering 

by overemphasizing the need for action in the presence of relatively small costs. 

By evaluating the price of uncertainty for a range of parameters in different security 

scenarios, we can determine which configurations can accommodate limited information 

environments (i.e., when being less informed does not significantly jeopardize an expert 

user's payoff). We also provide a framework for future work in the area of analysis of the 

value of security-relevant information. For example, we believe that the game-theoretic 

analysis in specialized scenarios, e.g., intrusion detection games [143], and security patrol 



www.manaraa.com

124 

versus robber avoidance scenarios [168] can benefit from a substantiation of the signifi­

cance of informational assumptions by studying the price of uncertainty. 

In Section 5.1, we draw the connection to our security games framework developed in 

earlier chapters. We present the different metrics for the price of uncertainty and describe 

our analysis methodology in Section 5.2. We conduct our analysis and discuss the results 

in Section 5.3. Finally, we close with a discussion and concluding remarks in Section 5.4. 

5.1 Decision-theoretic model 

Our study of the price of uncertainty is conducted within the context of a decision-

theoretic security analysis that we have completed in Chapter 4. We studied the decision­

making of a sophisticated (expert) agent who interacts with a group of users that follow a 

simple but reasonable rule-of-thumb strategy. We refer to Chapter 4 for a discussion of the 

setup of the model. 

In Chapter 4 we provide the basic results for the three canonical scenarios and the 

decision-making of the expert and naive agents detailed in. 

Our starting point for the current analysis are the total payoff results in Tables A.5, 

A. 10, and A. 15. We will derive metrics to compare the impact of the important decision 

making parameters on the payoffs achievable in the two different information conditions. 

Thereby, we focus on the choices and payoffs garnered by the expert agent. 
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5.2 Price of uncertainty metrics 

In Chapter 4 we discuss two information conditions (complete information and incom­

plete information) for an expert player in three canonical security games. In this context, 

the price of uncertainty measures the disadvantage of the expert player when she has in­

complete information, compared to when she has complete information. Depending on 

the form this measure takes, the price of uncertainty potentially depends on five different 

parameters: 

1. the cost of protection b, 

2. the cost of insurance c, 

3. the magnitude of potential losses L, 

4. the initial endowment M, and 

5. the number of other players N. 

Because the analysis of five-variable functions is somewhat cumbersome, a central objec­

tive in our metric-creation exercise is to reduce the number of parameters in a manner such 

that something both relevant and interesting can be said. In this work we focus on how 

the price of uncertainty depends on the magnitude of potential losses L and the number 

of other players N. To eliminate M we choose a canonical value of either 0 or L, and to 

eliminate b and c we chose the values that cause the price of uncertainty to have the greatest 

significance. This choice depends on the metric. 
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5.2.1 Three metrics for the price of uncertainty 

For each of our three security games, best shot, weakest-link, and total effort, we define 

metrics for the price of uncertainty having the following three forms: 

1. The difference metric PoU\{L, N), defined by 

max [Expected Payoff Complete^, c, L, L, N) 
b,c€[0,L] 

—Expected Payoff Incomplete^, c, L, L, N)] 

2. The payoff-ratio metric PoU2(L, N) defined by 

Expected Payoff Complete^, c, L, L, N) 
Expected Payoff Incomplete^, c, L, L, N) 

3. The cost-ratio metric PoU3(L, N) defined by 

Expected Payoff Complete^, c, L, 0, N) 
Expected Payoff Incomplete^, c, L, 0, N) 

5.2.2 Discussion of the definitions 

The difference metric 

The difference metric is our most straightforward metric. It says the price of uncertainty 

is the worst case difference in payoff between complete and incomplete information, where 

the maximum is taken over all possible prices for protection and insurance. In this metric, 

a completely insignificant price of uncertainty yields an output of zero, and the metric's 

output increases directly as the price of uncertainty becomes more significant. 

max 
b,c€[0,L] 

min 
6,c€[0,L] 
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The payoff-ratio metric 

The payoff-ratio metric is motivated by the game-theoretic notion of the "price of an­

archy", which is defined as a payoff-ratio of a game's socially optimal equilibrium to its 

worst case Nash equilibrium [129]. By analogy, we defined the price of uncertainty as 

the worst case payoff-ratio of the expert with complete information to the expert with in­

complete information, with the worst case taken over all possible prices of protection and 

insurance. One advantage of using a ratio-style metric of this type is that its output is 

currency-independent. In other words, while our difference metric might depend on say 

dollars or euros, this ratio metric is just a pure number. In the payoff-ratio metric, a com­

pletely insignificant price of uncertainty yields an output of 1, and the metric's output 

increases as the price of uncertainty becomes more significant. 

The cost-ratio metric 

The cost-ratio metric is similar to the payoff-ratio metric, but with a different canonical 

choice of 0 for the initial endowment M. This metric directly measures the ratio of costs 

induced by the expert's choices. These costs are reflected in formulas involving b, c, L, 

and N. Mathematically, the cost ratio allows for a simpler algebraic analysis due to an 

abundance of term cancellations. A minor disadvantage of this metric's formulation is that 

it has a somewhat nonstandard orientation, in the sense that it decreases as the price of 

uncertainty becomes more significant. There are two justifications for this choice. First 

we wanted to cast this metric as being a simpler analogue to the payoff-ratio metric; and 
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second we wanted to avoid values at infinity, which would have resulted had we used this 

metric's multiplicative inverse. In our cost-ratio metric, a completely insignificant price of 

uncertainty yields an output of 1, and the metric's output decreases toward zero as the price 

of uncertainty becomes more significant. 

5.3 Analysis 

In this section, we analyze the price of uncertainty as defined by each of our three met­

rics in each of our three security games. In each case the analysis proceeds as follows. 

First, considering the magnitude of potential loss L and the number of other players N 

as fixed parameters, we determine the protection cost b and insurance cost c which cause 

the metric under consideration to yield its most significant value. This process defines a 

function of two parameters L and N, which we then analyze as a measure of the price of 

uncertainty. In some scenarios we are able to produce clean algebraic results with tight 

asymptotic bounds. For others we must rely almost completely on computer-aided nu­

merical analysis and graphs. Each subsection contains graphs of all relevant metrics and 

maximizing parameters, and concludes with some important observations. 

5.3.1 Best shot game 

The best shot difference metric: BPoUi(L, N) 

In this section we analyze the price of uncertainty metric BPoUi(L, N) defined as: 
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max [Best Shot Expected Payoff Complete(6, c, L, M, N) 
b,ce[0,L] 

— Best Shot Expected Payoff Incomplete^, c, L, M, N)] 

In the best shot game, the complete and incomplete payoffs are the same when c < b; 

hence to compute the maximum payoff difference we may assume that b < c. Observe that 

in this case the payoffs do not depend on c at all. This will help to simplify our analysis. 

Best Shot Expected Payoff Complete^, c, L, M, N) 

— Best Shot Expected Payoff Incomplete^, c, L, M, N) 

M-b[ 1 
N-l 

M - 2 L 

J V - l 

2LJ \L 

2 - 6 + 2 L J U 
L2 - 2bL + b2 fb^ N~l 

2L \L 

(L - b)2 ( b 
2L 

This expression is maximized as a function of b when its partial derivative with respect 

to b is zero. So we compute: 
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n {N + l \ fb\N-2 [fb\2 2N fb\ N - l \ 

°-(—)(z) (I-'JU-FTT) 

The expression is zero if and only if 

6 = 0 or b = L or b = L- ——- . 
\N + 1J 

From the second derivative test we find that 6 = 0 and b — L give local minima, hence 

the maximizing value of this expression for b e [0, L] occurs when b = L- ^ y . Figure 5.1 

plots this maximizing b as a function of N. For the price of uncertainty, we have 
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Best shot - Maximizing b 

Figure 5.1: Best shot - Difference metric: Maximizing b for BPoU± (L, N). 
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BPoUi(L,N) 

= max [Best Shot Expected Payoff Complete(6, c, L, M, N) 
b,ce[0,L] 

— Best Shot Expected Payoff Incomplete^, c, L, M, N)] 

"{L-bf (b\N-^ 
= max ——-— — 

be[o,L] 2L \LJ 

2L y L 

2L \N + 1 
N-l 

2L {N-l 

= 2L 

(N + iy \N + I 
(N-l)"-1 

(N + 1)N+1 

To give an asymptotic analysis, we begin by noting that limn^oo ( ^ T J ) JV-I 

Rewriting the expression above as 2L (j^) • (jv+n2' we see that the first part ap­

proaches |y as N gets large, and that the second part decreases to zero quadratically in 

jj. Hence this metric for the price of uncertainty increases linearly in L for fixed N and 

decreases quadratically to zero in -̂  for fixed L. Figure 5.2 shows a graph of the metric 

BPoU\ as a function of N and L. 

Observations. The interpretation of our numerical results for this metric is that the price of 

uncertainty increases with the potential losses, but as the number of players increases, the 

price of uncertainty diminishes (unless the losses are quite high - approaching the square 

of the number of players). 
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Best shot -BPoUl(L.N) 

25 25 

Figure 5.2: Best shot - Difference metric: BPoUi(L, N). The metric grows linearly in 
the potential loss L for a fixed network size N, and decreases inverse-quadratically in the 
network size N for a fixed loss L. 
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The best shot payoff-ratio metric BPoU2(L, N) 

In this section, we analyze the price of uncertainty metric BPoU2(L, N), defined as 

Best Shot Expected Payoff Complete^, c, L, L, N) 
b,ce[o,L] [Best Shot Expected Payoff Incomplete^, c, L, L, N) 

(5.1) 

BPoU2(L,N) 

Best Shot Expected Payoff Complete^, c, L, L, N) 
max b,ce[o,L\ [Best Shot Expected Payoff Incomplete^, c, L, L, N) 

max 
be[0,L] 

, JV-1 

max 
6G[0 

= max 

21 ^(i-Htr1) 
(1 - 5 (1 - f) B^-i) 

BG[0,1] ( 1 - i ^ ^ - 1 ) 

1 - £ " + § B " + 1 

1 - \BN-^ 
= max 

Be[o,i] 

= max 1 + 2 

Be[o,i] 1 - lBN~l 

I ^ " 1 (1 - B)' 
= max 1 + 

Be[o,i] 1 - § £ " - 1 

To compute the maximum, we take the derivative with respect to B and set it equal to 

zero. We get: 
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_ (H=lBN-2(l - Bf + \BN~l • 2(1 - B) • {-\))-{l-\BN-1) 

(1 - IB"-*) 

(lBN-1(l-B)2)-(-^BN-2) 

(i - \B^y 
0 = (^1B

N-2(1 - B)2 - BN~l{\ - B)\ • (l - l-BN-1 

+ ^1B2N-3(I-B)2 

0 = r^±BN~2(l - B)2 - BN-\l -B)- ^llB2N-3(l - Bf 

+ \B2N-2{\ -B) + EzlB™-z ( 1 _ B)2 
2 4 

0 = ^-^B"-2(l - B)2 - B"-'(l -B)+ l-B2"-2(l - B) 

0 = (l~B)B"-2(^-l^-B^-B+^-

0 = ^—-^-BN-2 (BN -B(N+1) + N-1) 
Both B = 1 and B = 0 are roots of this equation, but when put back into the maximiz­

ing formula, they each give the global minimum value of 1. It remains to find a solution to 

this derivative equation for B in (0,1). We know there is such a root because the value of 

BN - B(N + 1) + TV - 1 is positive at B = 0 and negative at B = 1. Unfortunately, this 

root, which must maximize the BP0U2 metric, is not generally expressible in closed form 

for N > 5. Figure 5.3 plots a graph of the maximizing b = LB as a function of AT and L. 

It follows from our derivations that this measure of the price of uncertainty does not 

depend on L. Figure 5.4 plots BP0U2 as a function of N. As can be seen from the graph, 
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Best shot - Maximizing b 

Figure 5.3: Best shot - Payoff-ratio metric: Maximizing b for BPoU2(L, N). 
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Best shot - BPoU2 (L,N) 
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Best shot - Payoff-ratio metric: BPoU2(L, N). The metric is independent of 

this metric approaches 1 as N increases. 

Observations. Since 1 represents the smallest price possible in this metric, the interpreta­

tion would be that the price of uncertainty becomes insignificant as the number of players 

increases, independent of the magnitude of potential losses. 

The best shot cost-ratio metric PoU3(B, L, N) 

In this section we analyze the price of uncertainty metric BPoU^iL^ N), defined as 

mm 
b,c<E[0,L] 

Best Shot Expected Payoff Complete^, c, L, 0, N) 
Best Shot Expected Payoff Incomplete^, c, L, 0, N) 

(5.2) 

This metric is expressed in terms of our payoff functions, but by starting with an initial 

endowment of zero, it really is a ratio of costs. If the cost of limited information is great 
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compared to the cost of complete information, this ratio will tend toward zero. On the other 

hand, if the costs are similar, then the ratio will tend toward one. We select the minimizing b 

and c for this ratio so as to obtain the most significant price of uncertainty under the metric. 

We have 

BPoU3{L,N) 

Best Shot Expected Payoff Complete^, c, L, 0, N) 
= mm b,ce[o,L] [Best Shot Expected Payoff Incomplete^, c, L, 0, N) 

= mm v 2LJ KL/ 
J V - l 

*[o,L] O - f ( A ) " - 1 

. 2 6 / b 
= mm — 1 — —-

6G[O,L] L \ 2L 

Clearly the minimum value (of zero) for this expression (assuming 0 < b < L) is 

achieved by taking b = 0. Or if the value b = 0 is to be avoided, the minimum is achieved 

by taking b arbitrarily close to zero. We observe that for the best shot game, this cost-ratio 

metric always measures the price of uncertainty at its greatest possible value, independent 

of N or L. The graphs for the maximizing b and the cost-ratio metric are both trivial but 

are included for consistency in Figures 5.5 and 5.6 respectively. 

Observations. The most direct interpretation for this result would be that the price of 

uncertainty is very significant, regardless of the number of players or the potential losses. 

An alternative, and arguably better explanation is that this particular metric is not a very 

useful provider of information for the best shot game. 
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Best shot - Maximizing b 

0.5 

0 K 

-0.5 

Figure 5.5: Best shot - Cost-ratio metric: Maximizing b for BPoU3(L, N). Here b is 
constantly equal to zero. 
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Best shot - BPoU3 (L,N) 

Figure 5.6: Best shot - Cost-ratio metric: BPoU3(L, N). As can be seen here, this metric 
is constant and equal to zero throughout the parameter space. 
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5.3.2 Weakest-link game 

In the weakest-link game, the complete and incomplete payoffs are the same when 

c < b, but for b < c there are a wide variety of cases to consider, and without some direction 

it is not clear which equations we should use. Unlike the best shot game in which most of 

our equational analysis involved a single variable b in a relatively-simple expression, a soft 

algebraic analysis of the weakest-link game is much more difficult to conduct. Our strategy 

is to use numerical approximations and graphs to determine which cases to consider, and 

consequently which equations to work with. Thus most of our algebraic work for this game 

takes the form of supporting, verifying, and clarifying the numerical analysis. 

The weakest-link difference metric: WPoUi(L, N) 

In this section we analyze the price of uncertainty metric WPoUi(L, N) defined as: 

max [Weakest-Link Expected Payoff Complete^, c, L, L, N) 
6,ce[0,L] 

— Weakest-Link Expected Payoff Incomplete^, c, L, L, N)] 

Our numerical analysis of this difference metric indicates that all the highest values 

lie in the weakest-link game's case WI3, in which we have -—AAT-I < c and c < b + 
(!-r) 

L (1 — (l — jr) ). Assuming that the minimizing values of b and c do lie in this case, 

we can analyze the payoff equations for this case to get more specific information. 
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Weakest-Link Expected Payoff Complete^, c, L, L, N) 

— Weakest-Link Expected Payoff Incomplete^, c, L, L, N) 

L - c + ^ + ( c - 6 ) ( l - — W l -
J V - 1 
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J V - l 
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2 i ( i - ( i - r - 1 ) 

To find conditions on a minimum c for this expression we take the partial derivative 

with respect to c and set it equal to zero. We get: 
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2(c - b) 

( i -c i - tr 1 ) . 
+ | 1 ~ L 

+ ^•( i - i i - ir 1 ) 

C=L -ni-tr1) i 
^ i r y ^ r y - (i - (l - £)" l) 

^ 4 r ' - ( i - ( i 4 r > 

L ( i - { r i . ( i - ( i - { r i ) + 6 
c = 

c = 

1 - ( ! - ( ! - { ) » - > ) ' 

(i-ir'-O-ci-trVci-ir1 

So this formula gives us the maximizing c as a function of b, L, and N. The dependence 

on L is quite weak in the sense that that f is a function of iV and ~. By making the 

assumption L = 1 and solving for c, we immediately get cL as the maximizing solution for 

the same equation if L were not equal to 1. 

Now to algebraically compute the maximizing b, we would just need to substitute 

the value of c from above into the payoff difference formula: f̂  (1 — (l — j) ) + 

(c - b) (1 - \l^"1 - ^ / " ^ l - i ' / (rfr)Ajv-ix; then take the derivative with re-
v L> 2£(i-£) 2L( i - ( i - i ) ) 
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Weakesl link - Maximizing b for WPoUl(L.N) Weakest link - Maximizing c for WPoUHI.,N) 

25 25 

Figure 5.7: Weakest-Link - Difference metric: Maximizing b and c for WPoUi (L, N). 

Weakest-link - WPoUl(L,N) 

• 2.5 
2 
1.5 
1 
0.5 
0 

Figure 5.8: Weakest-Link - Difference metric: WPoUi(L,N). The metric grows lin­
early in the losses L and remains relatively constant for fixed L regardless of the network 
size N. 
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spect to b and find a root of this derivative in the interval [0, L]. We will spare the reader 

the computation of this derivative, as there is no closed form expression for the root of the 

degree 5N polynomial we would eventually need to find. Instead we refer to the graphs 

relevant to this metric. Figure 5.7 gives the maximizing b and c (respectively) as functions 

of L and N. Then Figure 5.8 gives the weakest-link difference metric WPoU\ as a function 

of Land TV. 

Observe that the maximizing b decreases to 0 as a function of JV but increases linearly in 

L. The maximizing c also decreases in iV and increases linearly in L. The difference metric 

itself increases linearly in L, but remains relatively-constant as N grows. This phenomenon 

can be explained by the following observation. The maximizing b for this metric satisfies 

the relation j £ O ( ^ ) , whence the expression (l — -|) approaches a constant as TV 

increases. All terms in WPoUi (L, N) involving N have this form; thus as iV grows the 

function value does not change. The graph shows additionally that the convergence to 

constant is quite fast in N. 

Observations. The interpretation for these numerical results is that the price of un­

certainty in the weakest-link game is highest when protection is cheap and insurance is 

competitively-priced. This price of uncertainty increases directly with the potential loss, 

and it is not affected by the number of other players. 



www.manaraa.com

146 

Weakest link - Maximizing b for WPoU2(l„N) Weakest link - Maximizing c for WPoU2(L,N) 

Figure 5.9: Weakest-Link - Payoff-ratio metric: Maximizing b and c for 
WPoll2(L, N). Note that the functions are actually expected to be continuous; the dif­
ferent "steps" that can be seen are due to sampling errors in our numerical evaluations. 

The weakest-link payoff-ratio metric PoU2(W, L, N) 

In this section we analyze the price of uncertainty metric WPoll2(L, TV), defined as 

Weakest-Link Expected Payoff Complete^, c, L, L, N) 
Weakest-Link Expected Payoff Incomplete^, c, L, L, N) J 

We begin by considering the graphs in Figure 5.9,which give as functions of L and N 

the b and c (respectively) which maximize the price of uncertainty under this metric. We 

see that the maximizing b increases linearly with L, but decreases to zero super-linearly 

in jj. The maximizing c also increases linearly with L, and decreases with N. For the 

weakest-link payoff-ratio metric, we observe that the metric has no dependence on L, and 

that there is a local maximum very close to N -— 4, and that after iV = 4 the ratio decreases 

toward zero as iV increases. 

The graph for the payoff ratio metric is given in Figure 5.10. We see from the figure that 

it does not depend on L. We can also derive this observation by considering the equations 

as we did in the best shot case, specifically noting that it is without loss of generality to 

max 
6,cG[0,L] 
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Weakest-link- WPoU2(L,N) 

25 25 

Figure 5.10: Weakest-Link - Payoff-ratio metric: WPoU2{L, N). Numeric simulations 
confirm the metric is independent of L. 

consider a maximum over £ and ^ in place of b and c respectively. Because the metric only 

depends on £ and f with the conditions 0 < b, c < L, it follows that L = 1 without loss of 

generality, and hence the metric does not depend on L. 

Observations. We observe that in the weakest-link payoff-ratio metric, the price of un­

certainty is highest when there are exactly 4 players, and it decreases toward its minimum 

possible value as the number of players increases. 

The weakest-link cost-ratio metric PoU3(W, L, N) 

In this section we analyze the price of uncertainty metric WPoUs(L, N), defined as 

Weakest-Link Expected Payoff Complete^, c, L, 0, TV) 
Weakest-Link Expected Payoff Incomplete^, c, L, 0, N) J 

m 

. -
- -
- -

i 
i 
i 
i 
i 
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13 
12 

min 
6,ce[0,L] 
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Weakest link - Maximizing b for WPoU3(L,N) 

Weakest link - Maximizing c for WPoU3(L.N) 

Figure 5.11: Weakest-Link - Cost-ratio metric: Maximizing b and c for 
WPoU3(L, N). e is an extremely small positive quantity (limited by machine precision, in 
this case), and e' > e is another extremely small positive quantity, barely greater than e. 

Consider the graphs in Figure 5.11, which give as functions of L and N the b and 

c (respectively) which maximize the price of uncertainty under this metric. We see that 

the maximum value for b is achieved when b (and consequently ^) is close to zero. The 

maximizing c is attained when f is scaled with -| appropriately. 

The graph for the payoff ratio metric is given in Figure 5.12. As with the payoff-ratio 

metric considered above, this ratio-based metric does not depend on L. The plot gives 

nonzero values for all TV but decreases to zero as N increases. Recall that zero in this 

metric represents the most significant price of uncertainty. 

Observations. The results for this metric can be interpreted as saying that the price of 

uncertainty becomes more significant as the number of players increases. This interpreta­

tion contradicts our observations in the difference and payoff-ratio metrics for this game, 

and serves as a prime example to illustrate that the choice of metric makes a significant 

difference in the interpretation. Our explanation of the discrepancy is that this cost-ratio 
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Weakest-link - WPoU3(L,N) 

25 25 

Figure 5.12: Weakest-Link - Cost-ratio metric: WPoU3(L, N). Numeric simulations 
confirm the metric is independent of L. 

metric focuses on comparing costs which are insignificantly small in both the complete 

and incomplete information environments, but whose limiting ratio indicates a significant 

discrepancy. Based on this observation, a blunt assessment is that the cost-ratio metric for 

the weakest-link game does not measure what we most generally think of as important. 
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5.3.3 Total effort game 

The total effort difference metric: TPoU^L, N) 

In this section we analyze the price of uncertainty metric TPoU\ (L, N) defined as: 

max [Total Effort Expected Payoff Complete^, c, L, M, TV) 
6,ce[0,L] 

- Total Effort Expected Payoff Incomplete(b, c, L, M, N)} 

As with the weakest-link game, there are a number of cases to consider when beginning 

to analyze the price of uncertainty metrics. Numerical evidence suggests that the maximiz­

ing b and c for this game are in the total effort game's case TI3, in which we have bN < L 

and b+ j^(N — 1) < c <2b — -|. Using the payoff equations from this case, we have: 
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Expected Payoff Complete (T, b,c,L, M, N) 

— Expected Payoff Incomplete(T, b, c, L, M, N) 
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Now because c occurs in the terms of this expression only quadratically, we could 

compute an expression for the partial derivative with respect to c that is almost-everywhere 

valid, then set the derivative equal to zero and solve for c. In fact, we did compute this, 
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Total effort -PoUl(L,N) 

Figure 5.13: Total effort - Difference metric: TPoUx{L, N). 

obtaining 

E 
LAT-l-f (c-6)j 

C = 

Apr[k] 
k=VN-l+l\ l L ( ! _ * ± i ) l 2^ f c = L i V - f (C_6)j ^ r F J ( 6 _£) 

Pr[k] L J V - l - f ( c -6) j / Pr[fc] 

2^fc=L7V-f+lj I L(!_fc±i) J b-

The problem with this formulation in terms of an algebraic analysis is that the variable c 

also occurs in the terms of the summands, and it is not clear how to use algebra to get it out 

of there. 

Proceeding with our numerical analysis, Figure 5.13 plots the price of uncertainty as 

a function of N and L. We observe that the price of uncertainty in this metric increases 

linearly in L and decreases to zero with N significantly more quickly than -^. 

Observations. The interpretation of our numerical results for this metric is that the price 
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Total effort - TPoU2(L,N) 
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Figure 5.14: Total effort - Payoff-ratio metric: TPoU2(L, N). 

of uncertainty increases with the potential losses, but as the number of players increases, 

the price of uncertainty diminishes quickly. 

The total effort payoff-ratio metric: TPoU2(L, N) 

In this section we analyze the price of uncertainty metric TPoU2(L, N) defined as: 

max 
b,ce{0,L] 

Total Effort Expected Payoff Complete^, c, L, L, N) 
Total Effort Expected Payoff Incomplete^, c, L, L, N) 

(5.5) 

For the remaining total effort metrics, our analysis relies exclusively on numerical ap­

proximations. Figure 5.14 plots the total effort game's payoff-ratio price of uncertainty as 

a function of N. The figure shows that the price of uncertainty does not depend on L and 

that it decreases toward 1 as N increases. 
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Total Effort — TPou3(L,N) 
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Figure 5.15: Total effort - Cost-ratio metric: TPoU3(L, N). 

Observations. In the total effort game, the payoff-ratio metric depends only on the number 

of players, and it diminishes to its least significant possible value as the number of players 

increases. 

The total effort cost-ratio metric: TPoU3(L, N) 

In this section we analyze the price of uncertainty metric TPoU3(L, N) defined as: 

max 
>,cg[0,L] 

Total Effort Expected Payoff Complete^, c, L, 0, N) 
Total Effort Expected Payoff Incomplete^, c, L, 0, N) 

(5.6) 

Figure 5.15 plots the total effort game's cost-ratio price of uncertainty as a function of 

N. As can be seen from the graph, the price of uncertainty does not depend on L, and 

decreases as N increases. 
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Observations. Using the cost-ratio metric for the total effort game, the price of uncertainty 

becomes more significant with an increase in the number of players. Once again this goes 

against the analogous conclusions for the other two metrics. Again we surmise that this 

happens because the cost-ratio metric focuses on the cases where the cost for both complete 

and incomplete information scenarios are quite small, but the ratio shows a significant 

distinction. 

5.4 Summary 

In this chapter we continued our investigation into the incentives of an individual expert 

user that rationally responds to the security choices of unsophisticated end-users under 

different informational assumptions (see Chapter 4). In particular, we study how the expert 

evaluates the importance of improving the information available for her decision-making. 

We propose three variations of the price of uncertainty metric that may serve as a decision 

help for the expert user. We distinguish between a difference, a payoff-ratio, and a cost-

ratio metric. 

Our work complements the rich area of security metrics that are commonly technical, 

financial [116] or market-based [27]. However, the price of uncertainty is motivated by 

game-theory and, more specifically, by Koutsoupias and Papadimitriou's metric to evaluate 

worst-case equilibria [129], and adds to the rich literature on information sharing, (manda­

tory) disclosure, and notice and consent that we reviewed in the introductory section. 
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Our research yields a number of somewhat counter-intuitive results: 

• Using cost-ratio metrics can be misleading, as two negligible costs in front of a large 

endowment may still produce a large ratio when divided by each other. While math­

ematically trivial, such a pitfall is relatively easy to get into. We showed that, unfor­

tunately, for all games we studied, cost-ratios are never an appropriate metric. The 

cynic in ourselves could actually point out that their main use would be for marketing 

purposes. Beware of snake oil! 

• Aside from the cost-ratio metric, the other metrics show a relatively low price of 

uncertainty across all the scenarios we considered, and this is especially true with a 

large number of players. The difference metric shows some signs of a penalty for lack 

of information, but if we consider the absolute payoff values (reported in Tables A.5, 

A. 10, and A. 15) we find the price of uncertainty in the difference metric is at most 

20% of the magnitude of the potential loss. Accordingly, we can summarize that 

in scenarios with many players the lack of information does not penalize an expert 

too much. On the other hand, the lack of knowledge (about interdependencies) that 

makes a user naive, as opposed to expert, results in significant payoff degradation 

regardless of the number of players (see Chapter 4). 

• Assuming fixed possible losses, the more players are in a network, the less informa­

tion matters. This is actually good news, as full information typically gets increas­

ingly difficult to gather as the number of players grows large. 
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• In contrast to our arguments in favor of difference-based metrics behavioral research 

has shown that individuals are frequently influenced by ratio-difference evaluations 

[175]. However, this makes consumers more vulnerable to (numerical) framing dif­

ferences that change perceptions about the benefits of additional information. For 

example, experimental research has reported robust evidence for consumers' pref­

erences for benefits that are presented as large ratios in comparison to small ra­

tios [134]. In the security context, marketers could easily switch the framing from 

a security to a reliability measure and thereby vary the size of the benefit ratio (e.g., 

from 3% vs. 5% failure to 97% vs. 95% reliability). As a result, individuals may 

exaggerage the importance of changes when risks or benefits are small [103,203]. 

• We have also shown that the payoff-ratio and the cost-ratio metrics are independent of 

the size of the losses, L. Human-subject experiments suggest, however, that decision­

makers may falsely utilize ratio considerations in the presence of (apparently) irrel­

evant information. For example, psychologists have found that investments in mea­

sures leading to savings of a fixed number of lives were preferred if the total number 

of individuals at risk was decreased [69]. Unfortunately, such a bias would lead to 

even less optimal decisions when considering the difference metric since the loss, L, 

is shown to be positively and linearly related to the price of uncertainty. 

Of course, we should not forget that we consider a rather specialized environment, 

where only one single expert is alone in a population of naive users. However stringent 

this assumption may sound, one should note that in reality, the number of expert users is 
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dwarfed by the number of "lambda" users, that may not have the expertise, or inclination, 

to act very strategically. 

Regardless of these limitations, we hope that this work will contribute to a serious 

discussion of information metrics applied to interdependent security scenarios. As we have 

shown here, selecting the most appropriate metric is not an straightforward choice, and 

several pitfalls exist. 
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Chapter 6 

Conclusions 

6.1 Contributions 

In this dissertation, we have developed a framework for the analysis of decision-making 

in the presence of security interdependencies and multiple types of investment types. We 

consider three canonical tightly-coupled games that capture scenarios in which users will 

jointly suffer from security breaches. Further, we present two variations of the novel 

weakest-target game. The game captures loosely-coupled interdependencies in which agents 

receive differentiated results based on their security strategies. 

The weakest-target game describes several security-relevant decision situations in which 

an attacker wants to exploit the least protected machines (e.g., to reduce the cost of amass­

ing a large botnet for distributed denial of service attacks or to send unsolicited communi­

cations). We believe that the usefulness of the weakest-target game also extends to other 
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contexts. For example, shirking in workplace environments as well as showing anti-social 

behaviors in society can be modeled with this game. 

We further distinguish between preventive and mitigative security investments. The 

effectiveness of users' protection investments are subject to interdependencies, while self-

insurance investments (e.g., backup technologies) yield a private return. We find that in 

the tightly-coupled interdependencies the co-existence of different types of equilibrium 

strategies creates challenges for successful system security. For example, in the weakest-

link game (for a wide range of parameter settings) protection and self-insurance strategies 

compete. As a result, users have no immediate means to infer whether other individuals will 

invest in protective measures rather than relying on recovery mechanisms. This problem 

can be a significant factor for failed security readiness, and the observed discrepancies of 

investment strategies in practice. 

We further extend our analysis to include bounded rational user types. We assume 

the population to include expert as well as inexperienced users. Experts act rationally 

and understand the implications of system interdependencies. Non-expert users draw on 

rule-of-thumb strategies and neglect the role of interdependencies, i.e., the impact of their 

investments on others and vice versa. 

Another extension is the consideration of alternative information structures. We con­

trast and compare security games under complete information with an incomplete infor­

mation setting. Users are aware of their own security-relevant cost and threat parameters, 

however they do not know the extent of the potential damages that other individuals face. 
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We develop a decision-theoretic methodology to study games with bounded rational 

agents and incomplete information. We further develop the price of uncertainty metrics to 

efficiently compare and highlight payoff differences between the complete and incomplete 

information environment. 

Our metrics analysis has implications for network designers that want to avoid unde­

sirable hotspots that penalize users for their lack of information about threats. Similarly, 

service providers or other intermediaries may take influence on the pricing and availability 

of security technologies to steer users to less harmful parameter configurations. 

6.2 Open questions 

There are a number of topics that deserve further consideration. 

Attacker ecology: We intend to study in more detail the impact of including strate­

gic attackers in our modeling framework [75]. Many malefactors implement fully auto­

mated attack protocols for which the exogenous attacker assumption is suitable. However, 

other interactions are highly specialized and individualized and, therefore, attackers may 

react strategically to changes in important security parameters and the defenders' incen­

tives for investments [42,189]. Explicitly modeling the incentives of attackers also allows 

the meaningful inclusion of additional defense strategies, such as investments in attacker 

identification and enforcement. We can further capture the inherent asymmetry between 

attackers and defenders, i.e., targets need to successfully defend against multiple threats 
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while attackers can benefit from a single weakness [48]. Considering multiple attackers, 

we can investigate the interdependencies that exist between attackers. Offenders compete 

for scarce resources, for example, the least protected defenders. They may also cooperate 

to achieve a coordinated attack on a well-defended target (e.g., the infrastructure of a nation 

state or the Internet). 

Behavioral study: Most of our analysis assumes that all players are selfish and perfectly 

rational (Chapters 2 and 3) or follow predictable patterns of nearsightedness (Chapters 4 

and 5). As has been discussed elsewhere, e.g., [47], this assumption generally leads to 

idealized models, which deserve to be complemented by empirical studies [104,133]. We 

are developing a set of laboratory experiments to conduct user studies and attempt to mea­

sure the differences between perfectly rational behavior and actual strategies devised and 

played. 
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Appendix A 

Derivations and tables for 

complete/incomplete information 

security game 

A.l Derivations for weakest-link game 

Weakest-link security game. Derivations for total expected game payoffs, conditioned 

on other players: The following derivations refer to Table A.4. 
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Cases (WC1) and (WC2a) and (WI1): 

Payoff [passivity] • Pr [passivity] + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr [protection] 

= [M - E\pi] • L] c 
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1 -
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1 -
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Case (WC2b): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr[protection] 

= [M- Efa] • L] • [M-c]- [0] + [M-b] 
L 

+ [M-b] 
L 

= M-b + 
2L 
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Case (WI2): 

Payoff [passivity] • Pr[passivity) + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr[protection] 
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Case (WI3): 
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Case (WI4): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr[protection] 
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Weakest-link security game. Derivations for total expected game payoffs, not con­

ditioned on other players: The following derivation refers to Table A.5. To remove 

dependence on pj for j ^ i in case WC2, we simply take a weighted sum of the total 

payoffs for cases WC2a and WC2b, where the weight is determined by the probability of 

minjjtiPj < -| assuming that each pj is drawn from the uniform distribution over [0,1] 

(and assuming b < c). 

We have: 

Case (WC2): 

Probability[Case (WC2a)] • ExPayoff[Case (WC2a)] 

+ Probability[Case (WC2b)] • ExPayoff[Case (WC2b)] 

> - ! 
N-V 

M -c + 
2L + >-i 

N-l 

L 

N-l c2 / c2 

= M-c+-+ c - -

c 2 -b2 

-"-^^M'-'-wU1-! 

b2 

N-l 

b2 

M - b + -

N-l 

N-l 

A.2 Derivations for best shot game 

Best shot security game. Derivations for total expected game payoffs, conditioned on 

other players: The following derivations refer to Table A.9. 
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Cases (BC1) and (BI1): 

Payoff [passivity] • Pr [passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr[protection] 

= [M- E\pi] • L] 
VL 

M 
\2L ) • 

+ [M-c]-

f [M - c] 

c 

1 -

+ [M - b] • [0] 

= M-2L-C+J 

= M-C+2L 

Case (BC2a): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr[protection] 

= [M- E\pi] • L] + [M-c]- [0] + [M-b] 
L 

M b_ 
2L 

•L + [M - b] • 

*, b2 , b2 
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Case (BC2b): 

Payoff {passivity} • Pr [passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr [protection] 

[M] • [1] + [M-c]- [0] + [M - b] • [0] 

= M 

Case (BI2): 

Pay off [passzf ity] • Pr[passivity] + Payoff [insurance] • Pr [insurance] 

+ Payoff [protection] • Pr [protection] 

M - E\pi] • L (±\ 
N-l 

— .iU(i 
N-l 

*, L h 

= M -
2 \L 

N-l 

[1] + [M-c]- [0] + [M - b] • [0] 

Best shot security game. Derivations for total expected game payoffs, not conditioned 

on other players: The following derivation refers to Table A. 10. To remove dependence 

on pj for j ^ i in case BC2, we simply take a weighted sum of the total payoffs for cases 

BC2a and BC2b, where the weight is determined by the probability of min,-^^ < £ 

assuming that each pj is drawn from the uniform distribution over [0,1]. 
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We have: 

Case (BC2): 

Probability[Case (BC2a)] • ExPa'yoff[Case (BC2a)] 

+ Probability[Case (BC2b)] • ExPayoff[Case (BC2b)] 

N-l 

M-b + 2L + - ' £ 
J V - l 

[M] 

-M-H-

= M-b[ 1 -

J V - l 

2L 

+ 2L \L 

N-l 

N-l 

A.3 Derivations for total effort game 

Total Effort security game. Derivations for total expected game payoffs, conditioned 

on other players: The following derivations refer to Table A. 14. 
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Case (TCI): c < b 

Payoff [passivity] • Pr [passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr [protection] 

[M - E\pi] • L] • 

M~2L-C+T 
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IL 
[M-c] 

+ [M-c] 

+ M-b-E[p%].L[l--

Cases (TC2) and (TC5): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

[0] 

Payoff [protection] - Pr[j>rotection] 

M - E\pi] - L I 
TV Mi-f) 

+ [M 
L(l~§) 

+ M-b-EM-L^l-Z^) [0] 
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Case (TC3): 

Payoff [passivity] • Pr [passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr [protection] 

M-E\IH].L(I-J?) 
bN 

T 

+ 

+ [M-c] 

c-b 

c-b 

Hi-m 
\ , , ^ 1 r (, # + ^ 1 [ C~b bN 

M -
'bN_ 
2L 

+ M-b--
2 

c-b 

bN 

bN 

•[M- 1 -

= M -
b2N2 

2L 

c-b 

^ ( l - ^ ) + L_ 
L I 

K + V 
N 

c-b 

c-b 

Mi-W 

N 
c + 

c2 — be 

= M-
2L 

c-b)2 

$)-< 

c2-bc 

(c - b)2 b2N2 f _ K + l\ 

2 L ( l - ^ i ) + 2L { N ) 

(c-b)2 b2N (c-b)2 

M1-*?)) L 

b2N 

b2N 

= M-c-\ — + 

(c - bf b2N (c - b)2 b2N 
L ( l - ^ ) + T - 2 L ( l - ^ ) - 2L 

h2 AT (C-b)2 

2L +2L(1-^) 



www.manaraa.com

Case (TC4): 

Payoff[passivity] • Pr\passivity] + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr•[protection] 

M-EW-Hl-j^ bN 

M-b- E\pi] - L I 
K+l 

N 

M 
bN 
2L 

•L 1 -
K 
iV 

bN 

+ M-b 
1 / bN 
2 1 + X 

^ - ^ ' 1 

- " ^ -

K_ 

iV 

K 

~N 

Hi 

M l 

+ [M - c] • [0] 

_ wv" 
LJ 

+ [M-c]-[0] 

K + l 

N 

bN\ L 
1 

bN 
LJ 

K + l 

b + 

L J 2 V N 

b2N L A K + l' 

1 
fr2iV2 

L " 2 1 1 
N 

b2N2 ( K + l 

2L N 

„ , , 627V L / K + l \ fc2iV 

= * _ » ( ! _ + 
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Case (TC6): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr[protection] 

K 
M - E\pi] • L 1 -

N 
[1] + [M-c]- [0] 

M~b-E[Pl]-L[l 
K + l 

N [0] 

= M - i [ l 
~N 

Case (Til): c < b 

Payof£[passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr\protection] 

= [M- E\pi] • L] 
YL. 

= M~2L-C+T 

+ [M-c]-

+ [M-c] 

1 
L + M-b- E[Pi] - L I 

N 

- z 

• [ 0 ] 

= M -c+ — 
LJ 
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Cases (TI2) and (TI5): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] - Pr[insurance] 

+ Payoff [protection] • Pr[protection] 

M - E\pi] b + 
L-b 

N b + ¥ + [M~c] 

M-b- E\pi] b 

M 

N 

2(6 + *=*) 
b + 

[0] 

L-b 

N 

1 -
u ^ N 

b+ — 
+ [M-c] 

b+^ 
u T N 

= M -c + 2(b+^) ^ ' 6 + ^ 

= M -c + 2(b+^) 
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Case (TI3) 

Payof£[passivity] • Pr [passivity] + Pay off [insurance] • Pr[insurance] 

+ Pay off [protection] • Pr [protection] 

M - E\pi] b + 

+ M-b- E[pi 

L-b 
N 

>4 

bN 

L 

c-b 

+ [M 
u N 

bN 
b T 

M 
b_N\ 
2LJ 

b + 
L-b 

„ L I (bN c-b 

67V 
+ [M' 

* " * 

,„ b2N2 / L-b 
= M - -^r- I b + 

-b 

2L2 V" ' N 

c-b bN 

c + c 

N 
2\ N 

b2N 

S i ^ / f 

2L 

(c-b)2 

c + c 

N 

c-b 

(c ~ bf 

/c-b 

N 

,2w2 

wv 
~L 

b2N 
L2 

b-± 
N 

» - * 

M -c + c 

b2N2 (h_b_ 

L 2(b- A) + 2L2 I,6 N 

w AT 
+ 

62iV (c - bf 

2L 2 ( 6 - £ ) 

(c - b)2 b2N = M-c+\ e + (c-b)2 

b-± ' 2L 2 ( 6 - A ) 

b2N (c-bf 
= M -c+ -^-+ v 

2L 2 ( 6 - A ) 
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Case (TI4) 

Payoff [passivity] • Pr\passivity] + Payoff [insur ance] • Pr[insurance] 

+ Payoff [protection] • Pr\protection] 

M - E\pi] b + 

M-b- E\pi] ( b -

M-

L-b 
N 

b_ 
iV 

L-

bN 
[M-c]. [0] 

bN 
T 

b N \ , t 

2L ){b+ N 

+ " - ' ^ 

b\\ 

A 
'bN' 

L 

u 6 M 
b - N, ) \ 

\ bN] 
rij 

,2 AT2 

= M 
b2N-
2L2 

b 

hb N 1 -

b_ 

~N 

bN_ 

T 

b2N 
2L 

Ml 
bN_ 

T 2L V N 
1 -

= M -
b2N2 

2L2 

_b_ 
N 

b2N 
~2L 

+ 2 l 1 6 

J - - I 6 

= M-b 
N 2L 

b2N , 627V 6iV . , 
^L-b+^T-2L[b N 

b_ 
N 
b 
iV 
b2N 

2AT2 

+ 
b2N 
2L2 
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Case(TI6): 

Payoff [passivity] • Pr[passivity] + Payoff [insurance] • Pr[insurance] 

+ Payoff [protection] • Pr [protection] 

[0] 

M-Ub+
L~b 

2 V TV 

Total effort security game. Derivations for total expected game payoffs, not condi­

tioned on other players: The following derivation refers to Table A. 15. For the total 

effort game, the dependence on other players is noted in terms of the integer K, the num­

ber of players other than player i who choose protection. To remove dependence on this 

K we must compute an appropriate expected value. To begin we rewrite each of the case 

expressions as a linear constraint on K. After doing this it becomes clear that cases TC2 

through TC4 are mutually exclusive and exhaustive in terms of K, and similarly for cases 

TC5 and TC6. We define case TC2-4 to be the union of cases TC2, TC3, and TC4. sim­

ilarly, we define case TC5-6 to be the union of cases TC5 and TC6. Now to compute an 

expected payoff for case TC2-4, we take the sum, over all possible values k for K, of the 

probability that exactly k players protect, times the payoff for this k (considering the case 

TC2, TC3, or TC4, that such a choice of K = k determines). We proceed similarly to 

compute the expected payoff for case TC5-6. 
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To obtain the expected payoff for TC2-4 we compute: 

Case (TC2-4): 

J V - l 

^2 pr[k] • Payoff assuming TC2-4 and that K = k 
fc=0 

= V Pr[k] • \M-c+ -. r , 
fc=0 

LiV-l-f(c-6)J / 

fe=[iV-f (c-6)J X \ / / 

and to obtain the expected payoff for TC5-6 we compute: 

Case (TC5-6): 

i V - l 

2_" Pr[k] • Payoff assuming TC5-6 and that K = k 
k=0 

[N-^\ 

= V Pr[k]-\M-c + -. TV 

N~l / L \ 
+ Yl Pr[k}-[M- — (N-k)) 

i »r r.AT . H i \ ' fc=[jV-££+lj 

where as before, 

i V - A / b\k /bxN~1~k 

^ = f * ^Zy u 

is the probability that exactly k players other than player i choose protection. 
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A.4 Tabulated results 

In the following, we provide the tabulated results for the complete and incomplete in­

formation analysis conducted in Chapter 4 and utilized in Chapter 5. 
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